Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe (2307.04897v1)
Abstract: Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7 % for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 $\mu$m, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon.
- Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
- Zajac, D. M. et al. Resonantly driven cnot gate for electron spins. Science 359, 439–442 (2018).
- Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
- Xue, X. et al. Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. X 9, 021011 (2019).
- Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
- Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
- Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).
- Rapid high-fidelity spin-state readout in Si/SiGe quantum dots via rf reflectometry. Phys. Rev. Appl. 13, 024019 (2020).
- Noiri, A. et al. Radio-frequency-detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).
- Struck, T. et al. Robust and fast post-processing of single-shot spin qubit detection events with a neural network. Sci. Rep. 11, 16203 (2021).
- Kammerloher, E. et al. Sensing dot with high output swing for scalable baseband readout of spin qubits. Preprint at https://arxiv.org/abs/2107.13598 (2021).
- Boter, J. M. et al. Spiderweb array: A sparse spin-qubit array. Phys. Rev. Appl. 18, 024053 (2022).
- Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).
- Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 116 (2020). 080501.
- Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional quantum dot array. Nat. Nanotechnol. 16, 296–301 (2021).
- Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
- Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
- Hollmann, A. et al. 30 GHz-voltage controlled oscillator operating at 4 K. Review of Scientific Instruments 89 (2018). 114701.
- Otten, R. et al. Qubit bias using a CMOS DAC at mK temperatures. In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4 (2022).
- Landig, A. J. et al. Virtual-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).
- Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).
- Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat Commun. 10, 1063 (2019).
- Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).
- Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).
- Mortemousque, P.-A. et al. Enhanced spin coherence while displacing electron in a two-dimensional array of quantum dots. PRX Quantum 2, 030331 (2021).
- Langrock, V. et al. Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered Si/SiGe/SiO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. PRX Quantum 4, 020305 (2023).
- Seidler, I. et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture. npj Quantum Inf. 8, 100 (2022).
- Bertrand, B. et al. Fast spin information transfer between distant quantum dots using individual electrons. Nat. Nanotechnol. 11, 672–676 (2016).
- Xue, R. et al. Si/SiGe qubus for single electron information-processing devices with memory and micron-scale connectivity function. Preprint at https://arxiv.org/abs/2306.16375 (2023).
- Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations. Nat. Commun. 13, 940 (2022).
- Coherent spin–valley oscillations in silicon. Nat. Phys. 19, 386–393 (2023).
- Nurizzo, M. et al. Complete readout of two-electron spin states in a double quantum dot. PRX Quantum 4, 010329 (2023).
- Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Materials 12, 494 (2013).
- Künne, M. et al. The spinbus architecture: Scaling spin qubits with electron shuttling. Preprint at https://arxiv.org/abs/2306.16348 (2023).
- HNF - Helmholtz Nano Facility. Journal of large-scale research facilities JLSRF 3, A112 (2017).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.