Papers
Topics
Authors
Recent
2000 character limit reached

Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe (2307.04897v1)

Published 10 Jul 2023 in quant-ph and cond-mat.mes-hall

Abstract: Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7 % for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 $\mu$m, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
  2. Zajac, D. M. et al. Resonantly driven cnot gate for electron spins. Science 359, 439–442 (2018).
  3. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
  4. Xue, X. et al. Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. X 9, 021011 (2019).
  5. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
  6. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
  7. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).
  8. Rapid high-fidelity spin-state readout in Si/SiGe quantum dots via rf reflectometry. Phys. Rev. Appl. 13, 024019 (2020).
  9. Noiri, A. et al. Radio-frequency-detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).
  10. Struck, T. et al. Robust and fast post-processing of single-shot spin qubit detection events with a neural network. Sci. Rep. 11, 16203 (2021).
  11. Kammerloher, E. et al. Sensing dot with high output swing for scalable baseband readout of spin qubits. Preprint at https://arxiv.org/abs/2107.13598 (2021).
  12. Boter, J. M. et al. Spiderweb array: A sparse spin-qubit array. Phys. Rev. Appl. 18, 024053 (2022).
  13. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).
  14. Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 116 (2020). 080501.
  15. Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional quantum dot array. Nat. Nanotechnol. 16, 296–301 (2021).
  16. Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
  17. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
  18. Hollmann, A. et al. 30 GHz-voltage controlled oscillator operating at 4 K. Review of Scientific Instruments 89 (2018). 114701.
  19. Otten, R. et al. Qubit bias using a CMOS DAC at mK temperatures. In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4 (2022).
  20. Landig, A. J. et al. Virtual-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).
  21. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).
  22. Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat Commun. 10, 1063 (2019).
  23. Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).
  24. Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).
  25. Mortemousque, P.-A. et al. Enhanced spin coherence while displacing electron in a two-dimensional array of quantum dots. PRX Quantum 2, 030331 (2021).
  26. Langrock, V. et al. Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered Si/SiGe/SiO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. PRX Quantum 4, 020305 (2023).
  27. Seidler, I. et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture. npj Quantum Inf. 8, 100 (2022).
  28. Bertrand, B. et al. Fast spin information transfer between distant quantum dots using individual electrons. Nat. Nanotechnol. 11, 672–676 (2016).
  29. Xue, R. et al. Si/SiGe qubus for single electron information-processing devices with memory and micron-scale connectivity function. Preprint at https://arxiv.org/abs/2306.16375 (2023).
  30. Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations. Nat. Commun. 13, 940 (2022).
  31. Coherent spin–valley oscillations in silicon. Nat. Phys. 19, 386–393 (2023).
  32. Nurizzo, M. et al. Complete readout of two-electron spin states in a double quantum dot. PRX Quantum 4, 010329 (2023).
  33. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Materials 12, 494 (2013).
  34. Künne, M. et al. The spinbus architecture: Scaling spin qubits with electron shuttling. Preprint at https://arxiv.org/abs/2306.16348 (2023).
  35. HNF - Helmholtz Nano Facility. Journal of large-scale research facilities JLSRF 3, A112 (2017).
Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.