Ariadne's Thread:Using Text Prompts to Improve Segmentation of Infected Areas from Chest X-ray images (2307.03942v1)
Abstract: Segmentation of the infected areas of the lung is essential for quantifying the severity of lung disease like pulmonary infections. Existing medical image segmentation methods are almost uni-modal methods based on image. However, these image-only methods tend to produce inaccurate results unless trained with large amounts of annotated data. To overcome this challenge, we propose a language-driven segmentation method that uses text prompt to improve to the segmentation result. Experiments on the QaTa-COV19 dataset indicate that our method improves the Dice score by 6.09% at least compared to the uni-modal methods. Besides, our extended study reveals the flexibility of multi-modal methods in terms of the information granularity of text and demonstrates that multi-modal methods have a significant advantage over image-only methods in terms of the size of training data required.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.