Signatures of afterglows from light dark matter boosted by supernova neutrinos in current and future large underground detectors (2307.03522v3)
Abstract: Supernova neutrino boosted dark matter (SN$\nu$ BDM) and its afterglow effect have been shown to be a promising signature for beyond Standard Model (bSM) physics. The time-evolution feature of SN$\nu$ BDM allows for %the possibly direct inference of DM mass $m_\chi$, and results in significant background suppression with improving sensitivity. This paper extends the earlier study and provides a general framework for computing the SN$\nu$ BDM fluxes for a supernova that occurs at any location in our galaxy. A bSM $U(1){L\mu-L_\tau}$ model with its gauge boson coupling to both DM and the second and third generation of leptons is considered, which allows for both DM-$\nu$ and DM-$e$ interactions. Detailed analysis of the temporal profile, angular distribution, and energy spectrum of the SN$\nu$ BDM are performed. Unique signatures in SN$\nu$ BDM allowing extraction of $m_\chi$ and detail features that contain information of the underlying interaction type are discussed. Expected sensitivities on the above new physics model from Super-Kamiokande, Hyper-Kamiokande, and DUNE detections of BDM events induced by the next galactic SN are derived and compared with the existing bounds.
- M. Battaglieri et al., in U.S. Cosmic Visions: New Ideas in Dark Matter (2017) arXiv:1707.04591 [hep-ph] .
- R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- B. Holdom, Phys. Lett. B 166, 196 (1986).
- P. Foldenauer, Phys. Rev. D 99, 035007 (2019), arXiv:1808.03647 [hep-ph] .
- G.-L. Lin and Y.-H. Lin, Phys. Rev. D 104, 063021 (2021), arXiv:2102.11151 [hep-ph] .
- M. Aguilar et al. (AMS), Phys. Rev. Lett. 115, 211101 (2015).
- D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 021303 (2017a), arXiv:1608.07648 [astro-ph.CO] .
- M. Ackermann et al. (Fermi-LAT), Astrophys. J. 840, 43 (2017), arXiv:1704.03910 [astro-ph.HE] .
- D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 251302 (2017b), arXiv:1705.03380 [astro-ph.CO] .
- R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 121, 051301 (2018), [Erratum: Phys.Rev.Lett. 122, 069901 (2019)], arXiv:1804.10697 [hep-ex] .
- G. Ambrosi et al. (DAMPE), Nature 552, 63 (2017), arXiv:1711.10981 [astro-ph.HE] .
- E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 [astro-ph.CO] .
- E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 251801 (2019a), arXiv:1907.11485 [hep-ex] .
- E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 241803 (2019b), arXiv:1907.12771 [hep-ex] .
- O. Abramoff et al. (SENSEI), Phys. Rev. Lett. 122, 161801 (2019), arXiv:1901.10478 [hep-ex] .
- T. Bringmann and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019), arXiv:1810.10543 [hep-ph] .
- C. V. Cappiello and J. F. Beacom, Phys. Rev. D 100, 103011 (2019), [Erratum: Phys.Rev.D 104, 069901 (2021)], arXiv:1906.11283 [hep-ph] .
- Y. Zhang, PTEP 2022, 013B05 (2022), arXiv:2001.00948 [hep-ph] .
- J. Jaeckel and W. Yin, JCAP 02, 044 (2021), arXiv:2007.15006 [hep-ph] .
- A. Das and M. Sen, Phys. Rev. D 104, 075029 (2021), arXiv:2104.00027 [hep-ph] .
- K. Abe et al. (Super-Kamiokande), Phys. Rev. Lett. 130, 031802 (2023), arXiv:2209.14968 [hep-ex] .
- X. Cui et al. (PandaX-II), Phys. Rev. Lett. 128, 171801 (2022), arXiv:2112.08957 [hep-ex] .
- R. Xu et al. (CDEX), (2022), arXiv:2201.01704 [hep-ex] .
- P. Carenza and P. De la Torre Luque, Eur. Phys. J. C 83, 110 (2023), arXiv:2210.17206 [astro-ph.HE] .
- G. Adhikari et al. (COSINE-100), (2023), arXiv:2306.00322 [hep-ex] .
- K. Abe et al. (Super-Kamiokande), Phys. Rev. D 94, 052010 (2016), arXiv:1606.07538 [hep-ex] .
- K. Abe et al. (Hyper-Kamiokande), (2018), arXiv:1805.04163 [physics.ins-det] .
- B. Abi et al. (DUNE), (2020), arXiv:2002.03005 [hep-ex] .
- A. Abusleme et al. (JUNO), Prog. Part. Nucl. Phys. 123, 103927 (2022), arXiv:2104.02565 [hep-ex] .
- K. Murase and I. M. Shoemaker, Phys. Rev. Lett. 123, 241102 (2019), arXiv:1903.08607 [hep-ph] .
- J. M. Cline and M. Puel, JCAP 06, 004 (2023), arXiv:2301.08756 [hep-ph] .
- K. Akita and S. Ando, (2023), arXiv:2305.01913 [astro-ph.CO] .
- W. D. Arnett and J. L. Rosner, Phys. Rev. Lett. 58, 1906 (1987).
- J. H. Davis, Phys. Rev. Lett. 117, 211101 (2016), arXiv:1606.02558 [hep-ph] .
- M. G. Walker and J. Penarrubia, Astrophys. J. 742, 20 (2011), arXiv:1108.2404 [astro-ph.CO] .
- S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
- S. Adhikari et al., (2022), arXiv:2207.10638 [astro-ph.CO] .
- M. Pospelov, Phys. Rev. D 80, 095002 (2009), arXiv:0811.1030 [hep-ph] .
- S. W. Li and J. F. Beacom, Phys. Rev. C 89, 045801 (2014), arXiv:1402.4687 [hep-ph] .
- Y. Nakano (Super-Kamiokande), J. Phys. Conf. Ser. 888, 012191 (2017).
- B. Dutta and L. E. Strigari, Ann. Rev. Nucl. Part. Sci. 69, 137 (2019), arXiv:1901.08876 [hep-ph] .
- E. Hardy and R. Lasenby, JHEP 02, 033 (2017), arXiv:1611.05852 [hep-ph] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.