Papers
Topics
Authors
Recent
2000 character limit reached

Only Pick Once -- Multi-Object Picking Algorithms for Picking Exact Number of Objects Efficiently (2307.02662v1)

Published 5 Jul 2023 in cs.RO

Abstract: Picking up multiple objects at once is a grasping skill that makes a human worker efficient in many domains. This paper presents a system to pick a requested number of objects by only picking once (OPO). The proposed Only-Pick-Once System (OPOS) contains several graph-based algorithms that convert the layout of objects into a graph, cluster nodes in the graph, rank and select candidate clusters based on their topology. OPOS also has a multi-object picking predictor based on a convolutional neural network for estimating how many objects would be picked up with a given gripper location and orientation. This paper presents four evaluation metrics and three protocols to evaluate the proposed OPOS. The results show OPOS has very high success rates for two and three objects when only picking once. Using OPOS can significantly outperform two to three times single object picking in terms of efficiency. The results also show OPOS can generalize to unseen size and shape objects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push policies to increase grasp access for robot bin picking,” in 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018, pp. 1249–1256.
  2. J. Mahler and K. Goldberg, “Learning deep policies for robot bin picking by simulating robust grasping sequences,” in Proceedings of the 1st Annual Conference on Robot Learning, ser. Proceedings of Machine Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78.   PMLR, 13–15 Nov 2017, pp. 515–524. [Online]. Available: https://proceedings.mlr.press/v78/mahler17a.html
  3. R. Matsumura, Y. Domae, W. Wan, and K. Harada, “Learning based robotic bin-picking for potentially tangled objects,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7990–7997.
  4. A. Agrawal, Y. Sun, J. Barnwell, and R. Raskar, “Vision-guided robot system for picking objects by casting shadows,” The International Journal of Robotics Research, vol. 29, no. 2-3, pp. 155–173, 2010.
  5. T. Yamada, S. Yamanaka, M. Yamada, Y. Funahashi, and H. Yamamoto, “Grasp stability analysis of multiple planar objects,” in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009, pp. 1032–1038.
  6. T. Yamada, M. Yamada, and H. Yamamoto, “Stability analysis of multiple objects grasped by multifingered hands with revolute joints in 2d,” in 2012 IEEE International Conference on Mechatronics and Automation, 2012, pp. 1785–1792.
  7. T. Yamada, N. Mimura, and Y. Funahashi, “Grasp stability analysis of two objects with both friction and frictionless contacts in two dimensions,” vol. 2005, 12 2005, pp. 285 – 290.
  8. T. Yamada, T. Ooba, T. Yamamoto, N. Mimura, and Y. Funahashi, “Grasp stability analysis of two objects in two dimensions,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 760–765.
  9. T. Yamada and H. Yamamoto, “Static grasp stability analysis of multiple spatial objects,” Journal of Control Science and Engineering, vol. 3, pp. 118–139, 2015.
  10. K. Harada and M. Kaneko, “Enveloping grasp for multiple objects,” in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), vol. 3, 1998, pp. 2409–2415 vol.3.
  11. ——, “Kinematics and internal force in grasping multiple objects,” in Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190), vol. 1, 1998, pp. 298–303 vol.1.
  12. K. Harada and M. Kaneko, “Neighborhood equilibrium grasp for multiple objects,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 3, 2000, pp. 2159–2164 vol.3.
  13. K. Harada, M. Kaneko, and T. Tsuji, “Rolling based manipulation for multiple objects,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 4, 2000, pp. 3887–3894 vol.4.
  14. T. Chen, A. Shenoy, A. Kolinko, S. Shah, and Y. Sun, “Multi-object grasping–estimating the number of objects in a robotic grasp,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 4995–5001.
  15. A. Shenoy, T. Chen, and Y. Sun, “Multi-object grasping – efficient robotic picking and transferring policy for batch picking,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 1–8.
  16. W. Agboh, J. Ichnowski, K. Goldberg, and M. Dogar, “Multi-object grasping in the plane,” Jun 2022, accepted to the International Symposium on Robotics Research (ISRR), 2022. [Online]. Available: http://arxiv.org/abs/2206.00229v2
  17. T. Sakamoto, W. Wan, T. Nishi, and K. Harada, “Efficient picking by considering simultaneous two-object grasping,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 8295–8300.
  18. W. C. Agboh, S. Sharma, K. Srinivas, M. Parulekar, G. Datta, T. Qiu, J. Ichnowski, E. Solowjow, M. Dogar, and K. Goldberg, “Learning to efficiently plan robust frictional multi-object grasps,” 2022. [Online]. Available: https://arxiv.org/abs/2210.07420
  19. D. Lowe, “Fitting parameterized three-dimensional models to images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 5, pp. 441–450, 1991.
  20. D. DeMenthon and L. S. Davis, “Model-based object pose in 25 lines of code,” International Journal of Computer Vision, vol. 15, pp. 123–141, 2005.
  21. M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce, and K. Daniilidis, “Single image 3d object detection and pose estimation for grasping,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 3936–3943.
  22. K. Ikeuchi, B. K. P. Horn, S. Nagata, T. Callahan, and O. Feingold, “Picking up an object from a pile of objects.” 1983.
  23. I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015. [Online]. Available: https://doi.org/10.1177/0278364914549607
  24. D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp planning,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 4304–4311.
  25. R. Li and H. Qiao, “A survey of methods and strategies for high-precision robotic grasping and assembly tasks—some new trends,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2718–2732, 2019.
  26. T. Yoshikawa, T. Watanabe, and M. Daito, “Optimization of power grasps for multiple objects,” in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, 2001, pp. 1786–1791 vol.2.
  27. Y. Sun, E. Amatova, and T. Chen, “Multi-object grasping – types and taxonomy,” in 2022 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 1–7.
  28. Z. Pan, A. Zeng, Y. Li, J. Yu, and K. Hauser, “Algorithms and systems for manipulating multiple objects,” IEEE Transactions on Robotics, pp. 1–19, 2022.
  29. A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.
  30. Y. Zhang, F. Abu-Khzam, N. Baldwin, E. Chesler, M. Langston, and N. Samatova, “Genome-scale computational approaches to memory-intensive applications in systems biology,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, 2005, pp. 12–12.
  31. G. Toussaint, “Solving geometric problems with the rotating calipers,” In Proceedings of IEEE MELECON’83, vol. 83, 02 2000.
  32. J. E. Wetzel, “Rectangles in rectangles,” Mathematics Magazine, vol. 73, no. 3, pp. 204–211, 2000. [Online]. Available: http://www.jstor.org/stable/2691523
  33. H. Ito and K. Iwama, “Enumeration of isolated cliques and pseudo-cliques,” ACM Trans. Algorithms, vol. 5, no. 4, nov 2009. [Online]. Available: https://doi.org/10.1145/1597036.1597044
  34. M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online]. Available: http://arxiv.org/abs/1801.04381
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.