Papers
Topics
Authors
Recent
2000 character limit reached

The tension in the absolute magnitude of Type Ia supernovae (2307.02434v1)

Published 5 Jul 2023 in astro-ph.CO

Abstract: This study aims to elucidate the tension in the Hubble constant ($H_0$), a key metric in cosmology representing the universe's expansion rate. Conflicting results from independent measurements such as the Planck satellite mission and the SH0ES collaboration have sparked interest in exploring alternative cosmological models. We extend the analysis by SH0ES to an arbitrary cosmographic model, obtaining a competitive local $H_0$ determination which only assumes the standard flat $\Lambda$CDM model ($73.14 \pm 1.10$ km/s/Mpc), and another which only assumes the FLRW metric ($74.56 \pm 1.61$ km/s/Mpc). The study also stresses the importance of the supernova magnitude calibration ($M_B$) in cosmological inference and highlights the tension in $M_B$ when supernovae are calibrated either by CMB and BAO observations or the first two rungs of the cosmic distance ladder. This discrepancy, independent of the physics involved, suggests that models solely changing the Hubble flow and maintaining a sound horizon distance consistent with CMB, fail to explain the discrepancy between early- and late-time measurements of $H_0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J.-Q. Xia, V. Vitagliano, S. Liberati, and M. Viel, “Cosmography beyond standard candles and rulers,” Phys. Rev. D 85 (2012) 043520, arXiv:1103.0378 [astro-ph.CO].
  2. J. Calcino and T. Davis, “The need for accurate redshifts in supernova cosmology,” JCAP 01 (2017) 038, arXiv:1610.07695 [astro-ph.CO].
  3. V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, “Cosmic Variance and the Measurement of the Local Hubble Parameter,” Phys.Rev.Lett. 110 (2013) 241305, arXiv:1303.3121 [astro-ph.CO].
  4. D. Camarena and V. Marra, “The impact of the cosmic variance on H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT on cosmological analyses,” Phys. Rev. D98 (2018) 023537, arXiv:1805.09900 [astro-ph.CO].
  5. D. Camarena and V. Marra, “Local determination of the Hubble constant and the deceleration parameter,” Phys. Rev. Res. 2 (2020) no. 1, 013028, arXiv:1906.11814 [astro-ph.CO].
  6. D. Camarena and V. Marra, “On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference,” Mon. Not. Roy. Astron. Soc. 504 (2021) 5164–5171, arXiv:2101.08641 [astro-ph.CO].
  7. G. Benevento, W. Hu, and M. Raveri, “Can Late Dark Energy Transitions Raise the Hubble constant?,” Phys. Rev. D 101 (2020) no. 10, 103517, arXiv:2002.11707 [astro-ph.CO].
  8. G. Efstathiou, “To H0 or not to H0?,” Mon. Not. Roy. Astron. Soc. 505 (2021) no. 3, 3866–3872, arXiv:2103.08723 [astro-ph.CO].
  9. K. L. Greene and F.-Y. Cyr-Racine, “Hubble distancing: focusing on distance measurements in cosmology,” JCAP 06 (2022) no. 06, 002, arXiv:2112.11567 [astro-ph.CO].
  10. L. Knox and M. Millea, “Hubble constant hunter’s guide,” Phys. Rev. D 101 (2020) no. 4, 043533, arXiv:1908.03663 [astro-ph.CO].
  11. N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J. Witte, V. Poulin, and J. Lesgourgues, “The H0 Olympics: A fair ranking of proposed models,” Phys. Rept. 984 (2022) 1–55, arXiv:2107.10291 [astro-ph.CO].
  12. P. Shah, P. Lemos, and O. Lahav, “A buyer’s guide to the Hubble constant,” Astron. Astrophys. Rev. 29 (2021) no. 1, 9, arXiv:2109.01161 [astro-ph.CO].
  13. D. Camarena and V. Marra, “A new method to build the (inverse) distance ladder,” Mon. Not. Roy. Astron. Soc. 495 (2020) 2630–2644, arXiv:1910.14125 [astro-ph.CO].
  14. D. Camarena, V. Marra, Z. Sakr, and C. Clarkson, “A void in the Hubble tension? The end of the line for the Hubble bubble,” Class. Quant. Grav. 39 (2022) no. 18, 184001, arXiv:2205.05422 [astro-ph.CO].
  15. V. Marra and L. Perivolaropoulos, “Rapid transition of Geff at zt≃similar-to-or-equals\simeq≃0.01 as a possible solution of the Hubble and growth tensions,” Phys. Rev. D 104 (2021) no. 2, L021303, arXiv:2102.06012 [astro-ph.CO].
  16. G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris, and L. Perivolaropoulos, “Late-transition versus smooth H⁢(z)𝐻𝑧H(z)italic_H ( italic_z )-deformation models for the resolution of the Hubble crisis,” Phys. Rev. D 105 (2022) no. 6, 063538, arXiv:2110.04336 [astro-ph.CO].
  17. L. Perivolaropoulos, “Is the Hubble Crisis Connected with the Extinction of Dinosaurs?,” Universe 8 (2022) no. 5, 263, arXiv:2201.08997 [astro-ph.EP].
  18. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z=0.15𝑧0.15z=0.15italic_z = 0.15,” Mon. Not. Roy. Astron. Soc. 449 (2015) no. 1, 835–847, arXiv:1409.3242 [astro-ph.CO].
  19. A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of CMB anisotropies in closed FRW models,” Astrophys.J. 538 (2000) 473–476, arXiv:astro-ph/9911177 [astro-ph].
  20. C. Howlett, A. Lewis, A. Hall, and A. Challinor, “CMB power spectrum parameter degeneracies in the era of precision cosmology,” JCAP 04 (2012) 027, arXiv:1201.3654 [astro-ph.CO].
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.