Papers
Topics
Authors
Recent
2000 character limit reached

Quadruple Inequalities: Between Cauchy-Schwarz and Triangle (2307.01361v4)

Published 3 Jul 2023 in math.MG

Abstract: We prove a set of inequalities that interpolate the Cauchy-Schwarz inequality and the triangle inequality. Every nondecreasing, convex function with a concave derivative induces such an inequality. They hold in any metric space that satisfies a metric version of the Cauchy-Schwarz inequality, including all CAT(0) spaces and, in particular, all Euclidean spaces. Because these inequalities establish relations between the six distances of four points, we call them quadruple inequalities. In this context, we introduce the quadruple constant - a real number that quantifies the distortion of the Cauchy-Schwarz inequality by a given function. Additionally, for inner product spaces, we prove an alternative, more symmetric version of the quadruple inequalities, which generalizes the parallelogram law.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. “The best constant in the Topchii-Vatutin inequality for martingales” In Statist. Probab. Lett. 65.3, 2003, pp. 199–206 DOI: 10.1016/j.spl.2003.06.002
  2. S.M. Buckley, K. Falk and D.J. Wraith “Ptolemaic spaces and CAT(0)” In Glasg. Math. J. 51.2, 2009, pp. 301–314 DOI: 10.1017/S0017089509004984
  3. Martin R. Bridson and André Haefliger “Metric spaces of non-positive curvature” 319, Grundlehren der mathematischen Wissenschaften Springer-Verlag, Berlin, 1999, pp. xxii+643 DOI: 10.1007/978-3-662-12494-9
  4. Leonard M. Blumenthal “Theory and applications of distance geometry.” Chelsea Publishing Co., New York,, 1970, pp. xi+347
  5. “Quasilinearization and curvature of Aleksandrov spaces” In Geom. Dedicata 133, 2008, pp. 195–218 DOI: 10.1007/s10711-008-9243-3
  6. “Two deterministic half-quadratic regularization algorithms for computed imaging” In Proceedings of 1st International Conference on Image Processing 2 Los Alamitos, CA, USA: IEEE Computer Society, 1994, pp. 168\bibrangessep169\bibrangessep170\bibrangessep171\bibrangessep172 DOI: 10.1109/ICIP.1994.413553
  7. Paul Corazza “Introduction to metric-preserving functions” In Amer. Math. Monthly 106.4, 1999, pp. 309–323 DOI: 10.2307/2589554
  8. Michel Marie Deza and Elena Deza “Encyclopedia of distances” Springer, Berlin, 2016, pp. xxii+756 DOI: 10.1007/978-3-662-52844-0
  9. Per Enflo “On the nonexistence of uniform homeomorphisms between Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces” In Ark. Mat. 8, 1969, pp. 103–105 DOI: 10.1007/BF02589549
  10. Per Enflo “Uniform structures and square roots in topological groups. II” In Israel J. Math. 8, 1970, pp. 253–272 DOI: 10.1007/bf02771561
  11. “Roundness properties of ultrametric spaces” In Glasg. Math. J. 56.3, 2014, pp. 519–535 DOI: 10.1017/S0017089513000438
  12. Thomas Foertsch, Alexander Lytchak and Viktor Schroeder “Nonpositive curvature and the Ptolemy inequality” In Int. Math. Res. Not. IMRN, 2007, pp. Art. ID rnm100\bibrangessep15 DOI: 10.1093/imrn/rnm100
  13. Maurice Fréchet “Les éléments aléatoires de nature quelconque dans un espace distancié” In Ann. Inst. H. Poincaré 10, 1948, pp. 215–310
  14. P.Thomas Fletcher, Suresh Venkatasubramanian and Sarang Joshi “The geometric median on Riemannian manifolds with application to robust atlas estimation” Mathematics in Brain Imaging In NeuroImage 45.1, Supplement 1, 2009, pp. S143–S152 DOI: 10.1016/j.neuroimage.2008.10.052
  15. Peter J. Green “Bayesian reconstructions from emission tomography data using a modified EM algorithm.” In IEEE transactions on medical imaging 9 1, 1990, pp. 84–93
  16. Peter J. Huber “Robust estimation of a location parameter” In Ann. Math. Statist. 35, 1964, pp. 73–101 DOI: 10.1214/aoms/1177703732
  17. Jovan Karamata “Sur une inégalité rélative aux fonctions convexes” In Publ. Math. Univ. Belgrade 1, 1932, pp. 145–148
  18. Ju.G. Rešetnjak “Non-expansive maps in a space of curvature no greater than K𝐾Kitalic_K.” In Sibirsk. Mat. Ž., 1968, pp. 918–927
  19. R.Tyrrell Rockafellar “Convex analysis” 28, Princeton Math. Ser. Princeton University Press, Princeton, NJ, 1970, pp. xviii+451 DOI: 10.1515/9781400873173
  20. Christof Schötz “Convergence rates for the generalized Fréchet mean via the quadruple inequality” In Electron. J. Stat. 13.2, 2019, pp. 4280–4345 DOI: 10.1214/19-EJS1618
  21. Christof Schötz “Strong laws of large numbers for generalizations of Fréchet mean sets” In Statistics 56.1, 2022, pp. 34–52 DOI: 10.1080/02331888.2022.2032063
  22. J.Michael Steele “The Cauchy-Schwarz master class” An introduction to the art of mathematical inequalities, AMS/MAA Problem Books Series Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 2004, pp. x+306 DOI: 10.1017/CBO9780511817106
  23. Karl-Theodor Sturm “Probability measures on metric spaces of nonpositive curvature” In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) 338, Contemp. Math. Amer. Math. Soc., Providence, RI, 2003, pp. 357–390 DOI: 10.1090/conm/338/06080
  24. “Maximum of the critical Galton-Watson processes and left-continuous random walks” In Teor. Veroyatn. Primen. 42.1, 1997, pp. 21–34 DOI: 10.1137/s0040585x97975903
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.