Gauging tensor networks with belief propagation (2306.17837v5)
Abstract: Effectively compressing and optimizing tensor networks requires reliable methods for fixing the latent degrees of freedom of the tensors, known as the gauge. Here we introduce a new algorithm for gauging tensor networks using belief propagation, a method that was originally formulated for performing statistical inference on graphical models and has recently found applications in tensor network algorithms. We show that this method is closely related to known tensor network gauging methods. It has the practical advantage, however, that existing belief propagation implementations can be repurposed for tensor network gauging, and that belief propagation is a very simple algorithm based on just tensor contractions so it can be easier to implement, optimize, and generalize. We present numerical evidence and scaling arguments that this algorithm is faster than existing gauging algorithms, demonstrating its usage on structured, unstructured, and infinite tensor networks. Additionally, we apply this method to improve the accuracy of the widely used simple update gate evolution algorithm.
- F. Verstraete, V. Murg and J.I. Cirac “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems” In Advances in Physics 57.2 Taylor & Francis, 2008, pp. 143–224 DOI: 10.1080/14789940801912366
- Laurens Vanderstraeten, Jutho Haegeman and Frank Verstraete “Tangent-space methods for uniform matrix product states” In SciPost Physics Lecture Notes, 2019, pp. 007 DOI: 10.21468/SciPostPhysLectNotes.7
- “Matrix product states and projected entangled pair states: Concepts, symmetries, theorems” In Rev. Mod. Phys. 93 American Physical Society, 2021, pp. 045003 DOI: 10.1103/RevModPhys.93.045003
- “The Tensor Network: Resources for tensor network algorithms, theory, and software” In Tensor Network URL: https://tensornetwork.org
- Glen Evenbly “Tensors.net: Resources for learning and implementing tensor network methods to study quantum many-body systems.” In Tensors.net URL: https://www.tensors.net
- Ulrich Schollwöck “The density-matrix renormalization group in the age of matrix product states” January 2011 Special Issue In Annals of Physics 326.1, 2011, pp. 96–192 DOI: https://doi.org/10.1016/j.aop.2010.09.012
- Román Orús “A practical introduction to tensor networks: Matrix product states and projected entangled pair states” arXiv:1306.2164 [cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph] In Annals of Physics 349, 2014, pp. 117–158 DOI: 10.1016/j.aop.2014.06.013
- Andrzej Cichocki “Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems” arXiv:1407.3124 [cs, math] type: article, 2014 DOI: 10.48550/arXiv.1407.3124
- “Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions” In Foundations and Trends® in Machine Learning 9.4-5 Now Publishers, Inc., 2016, pp. 249–429 DOI: 10.1561/2200000059
- Jacob C. Bridgeman and Christopher T. Chubb “Hand-waving and interpretive dance: an introductory course on tensor networks” In Journal of Physics A: Mathematical and Theoretical 50.22 IOP Publishing, 2017, pp. 223001 DOI: 10.1088/1751-8121/aa6dc3
- “Diagonalizing Transfer Matrices and Matrix Product Operators: A Medley of Exact and Computational Methods” In Annual Review of Condensed Matter Physics 8.1, 2017, pp. 355–406 DOI: 10.1146/annurev-conmatphys-031016-025507
- “Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives” In Foundations and Trends® in Machine Learning 9.6 Now Publishers, Inc., 2017, pp. 431–673 DOI: 10.1561/2200000067
- Román Orús “Tensor networks for complex quantum systems” arXiv:1812.04011 [cond-mat, physics:hep-lat, physics:quant-ph] In Nature Reviews Physics 1.9 Nature Publishing Group, 2019, pp. 538–550 DOI: 10.1038/s42254-019-0086-7
- Simeng Yan, David A. Huse and Steven R. White “Spin-Liquid Ground State of the S=1/2𝑆12S=1/2italic_S = 1 / 2 Kagome Heisenberg Antiferromagnet” In Science 332.6034, 2011, pp. 1173–1176 DOI: 10.1126/science.1201080
- Stefan Depenbrock, Ian P. McCulloch and Ulrich Schollwöck “Nature of the Spin-Liquid Ground State of the S=1/2𝑆12{S}=1/2italic_S = 1 / 2 Heisenberg Model on the Kagome Lattice” In Physical Review Letters 109.6 American Physical Society, 2012, pp. 067201 DOI: 10.1103/PhysRevLett.109.067201
- “Phase diagram of the J1−J2subscript𝐽1subscript𝐽2J_{1}-J_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Heisenberg model on the kagome lattice” In Physical Review B 91.10 American Physical Society, 2015, pp. 104418 DOI: 10.1103/PhysRevB.91.104418
- “Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms” In Physical Review X 5.4 American Physical Society, 2015, pp. 041041 DOI: 10.1103/PhysRevX.5.041041
- “Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model” In Physical Review X 7.3 American Physical Society, 2017, pp. 031020 DOI: 10.1103/PhysRevX.7.031020
- “Stripe order in the underdoped region of the two-dimensional Hubbard model” In Science 358.6367, 2017, pp. 1155–1160 DOI: 10.1126/science.aam7127
- “Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model” In Physical Review X 10.3 American Physical Society, 2020, pp. 031016 DOI: 10.1103/PhysRevX.10.031016
- “Coexistence of superconductivity with partially filled stripes in the Hubbard model” arXiv:2303.08376 [cond-mat, physics:physics] type: article, 2023 DOI: 10.48550/arXiv.2303.08376
- Steven R. White and Richard L. Martin “Ab initio quantum chemistry using the density matrix renormalization group” In The Journal of Chemical Physics 110.9 American Institute of Physics, 1999, pp. 4127–4130 DOI: 10.1063/1.478295
- “The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges” In The Journal of Chemical Physics 152.4 American Institute of Physics, 2020, pp. 040903 DOI: 10.1063/1.5129672
- Garnet Kin-Lic Chan and Sandeep Sharma “The Density Matrix Renormalization Group in Quantum Chemistry” In Annual Review of Physical Chemistry 62.1, 2011, pp. 465–481 DOI: 10.1146/annurev-physchem-032210-103338
- Naoki Nakatani and Garnet Kin-Lic Chan “Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm” In The Journal of Chemical Physics 138.13 American Institute of Physics, 2013, pp. 134113 DOI: 10.1063/1.4798639
- Yuki Kurashige, Garnet Kin-Lic Chan and Takeshi Yanai “Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II” In Nature Chemistry 5.8 Nature Publishing Group, 2013, pp. 660–666 DOI: 10.1038/nchem.1677
- “Tensor product methods and entanglement optimization for ab initio quantum chemistry” arXiv:1412.5829 [cond-mat, physics:math-ph, physics:physics, physics:quant-ph] In International Journal of Quantum Chemistry 115.19, 2015, pp. 1342–1391 DOI: 10.1002/qua.24898
- Yiqing Zhou, E.Miles Stoudenmire and Xavier Waintal “What Limits the Simulation of Quantum Computers?” In Physical Review X 10.4 American Physical Society, 2020, pp. 041038 DOI: 10.1103/PhysRevX.10.041038
- “Hyper-optimized tensor network contraction” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 410 DOI: 10.22331/q-2021-03-15-410
- Jielun Chen, E.M. Stoudenmire and Steven R. White “The Quantum Fourier Transform Has Small Entanglement” arXiv:2210.08468 [quant-ph] type: article, 2022 DOI: 10.48550/arXiv.2210.08468
- “Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method” In Physical Review Letters 128.3 American Physical Society, 2022, pp. 030501 DOI: 10.1103/PhysRevLett.128.030501
- Feng Pan, Keyang Chen and Pan Zhang “Solving the Sampling Problem of the Sycamore Quantum Circuits” In Physical Review Letters 129.9 American Physical Society, 2022, pp. 090502 DOI: 10.1103/PhysRevLett.129.090502
- “Density-Matrix Renormalization Group Algorithm for Simulating Quantum Circuits with a Finite Fidelity” In PRX Quantum 4.2 American Physical Society, 2023, pp. 020304 DOI: 10.1103/PRXQuantum.4.020304
- “Efficient tensor network simulation of IBM’s kicked Ising experiment”, 2023 arXiv:2306.14887 [quant-ph]
- Edwin Stoudenmire and David J Schwab “Supervised Learning with Tensor Networks” In Advances in Neural Information Processing Systems 29 Curran Associates, Inc., 2016 URL: https://papers.nips.cc/paper_files/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
- “Unsupervised Generative Modeling Using Matrix Product States” In Physical Review X 8.3 American Physical Society, 2018, pp. 031012 DOI: 10.1103/PhysRevX.8.031012
- “Machine learning by unitary tensor network of hierarchical tree structure” In New Journal of Physics 21.7 IOP Publishing, 2019, pp. 073059 DOI: 10.1088/1367-2630/ab31ef
- “Towards quantum machine learning with tensor networks” In Quantum Science and Technology 4.2 IOP Publishing, 2019, pp. 024001 DOI: 10.1088/2058-9565/aaea94
- I.V. Oseledets “Approximation of 2d×2dsuperscript2𝑑superscript2𝑑2^{d}\times 2^{d}2 start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT × 2 start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT Matrices Using Tensor Decomposition” In SIAM Journal on Matrix Analysis and Applications 31.4, 2010, pp. 2130–2145 DOI: 10.1137/090757861
- Boris N. Khoromskij “O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling” In Constructive Approximation 34.2, 2011, pp. 257–280 DOI: 10.1007/s00365-011-9131-1
- S.V. Dolgov, B.N. Khoromskij and I.V. Oseledets “Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker–Planck Equation” In SIAM Journal on Scientific Computing 34.6 Society for IndustrialApplied Mathematics, 2012, pp. A3016–A3038 DOI: 10.1137/120864210
- Boris N. Khoromskij “Tensor Numerical Methods for High-dimensional PDEs: Basic Theory and Initial Applications” arXiv:1408.4053 [math] type: article, 2014 DOI: 10.48550/arXiv.1408.4053
- Michael Lubasch, Pierre Moinier and Dieter Jaksch “Multigrid renormalization” In Journal of Computational Physics 372, 2018, pp. 587–602 DOI: 10.1016/j.jcp.2018.06.065
- Juan José García-Ripoll “Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 431 DOI: 10.22331/q-2021-04-15-431
- Lorenz Richter, Leon Sallandt and Nikolas Nüsken “Solving high-dimensional parabolic PDEs using the tensor train format” PMLR, 2021, pp. 8998–9009 URL: https://proceedings.mlr.press/v139/richter21a.html
- “A quantum-inspired approach to exploit turbulence structures” In Nature Computational Science 2.1 Nature Publishing Group, 2022, pp. 30–37 DOI: 10.1038/s43588-021-00181-1
- Nikita Gourianov “Exploiting the structure of turbulence with tensor networks” University of Oxford, 2022 URL: https://ora.ox.ac.uk/objects/uuid:9e3f4786-ad68-4913-9a0d-e9b1e108128f
- Jacob D. Biamonte, Jason Morton and Jacob Turner “Tensor Network Contractions for #SAT” In Journal of Statistical Physics 160.5, 2015, pp. 1389–1404 DOI: 10.1007/s10955-015-1276-z
- “Fast counting with tensor networks” In SciPost Physics 7.5, 2019, pp. 060 DOI: 10.21468/SciPostPhys.7.5.060
- “Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks” In Physical Review Research 4.1 American Physical Society, 2022, pp. 013006 DOI: 10.1103/PhysRevResearch.4.013006
- “Application of Tensor Neural Networks to Pricing Bermudan Swaptions” arXiv:2304.09750 [quant-ph, q-fin] type: article, 2023 DOI: 10.48550/arXiv.2304.09750
- Steven R. White “Density matrix formulation for quantum renormalization groups” In Physical Review Letters 69.19 American Physical Society, 1992, pp. 2863–2866 DOI: 10.1103/PhysRevLett.69.2863
- Sebastian Holtz, Thorsten Rohwedder and Reinhold Schneider “The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format” In SIAM Journal on Scientific Computing 34.2 Society for IndustrialApplied Mathematics, 2012, pp. A683–A713 DOI: 10.1137/100818893
- “Solution of Linear Systems and Matrix Inversion in the TT-Format” In SIAM Journal on Scientific Computing 34.5, 2012, pp. A2718–A2739 DOI: 10.1137/110833142
- S.V. Dolgov “TT-GMRES: solution to a linear system in the structured tensor format” In Russian Journal of Numerical Analysis and Mathematical Modelling 28.2 De Gruyter, 2013, pp. 149–172 DOI: 10.1515/rnam-2013-0009
- Sergey V. Dolgov and Dmitry V. Savostyanov “Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions” In SIAM Journal on Scientific Computing 36.5 Society for IndustrialApplied Mathematics, 2014, pp. A2248–A2271 DOI: 10.1137/140953289
- Sergey V. Dolgov and Dmitry V. Savostyanov “Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm” In Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes in Computational Science and Engineering Cham: Springer International Publishing, 2015, pp. 335–343 DOI: 10.1007/978-3-319-10705-9_33
- Christian Lubich, Ivan V. Oseledets and Bart Vandereycken “Time Integration of Tensor Trains” In SIAM Journal on Numerical Analysis 53.2, 2015, pp. 917–941 DOI: 10.1137/140976546
- “Strictly single-site DMRG algorithm with subspace expansion” In Physical Review B 91.15 American Physical Society, 2015, pp. 155115 DOI: 10.1103/PhysRevB.91.155115
- Vedika Khemani, Frank Pollmann and S.L. Sondhi “Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach” In Phys. Rev. Lett. 116 American Physical Society, 2016, pp. 247204 DOI: 10.1103/PhysRevLett.116.247204
- Steven R. White “Density-matrix algorithms for quantum renormalization groups” In Physical Review B 48.14 American Physical Society, 1993, pp. 10345–10356 DOI: 10.1103/PhysRevB.48.10345
- “Unifying time evolution and optimization with matrix product states” In Physical Review B 94.16 American Physical Society, 2016, pp. 165116 DOI: 10.1103/PhysRevB.94.165116
- Brenden Roberts, Thomas Vidick and Olexei I. Motrunich “Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians” In Phys. Rev. B 96 American Physical Society, 2017, pp. 214203 DOI: 10.1103/PhysRevB.96.214203
- Sergey V. Dolgov “A Tensor Decomposition Algorithm for Large ODEs with Conservation Laws” In Computational Methods in Applied Mathematics 19.1 De Gruyter, 2019, pp. 23–38 DOI: 10.1515/cmam-2018-0023
- Eric Jeckelmann “Dynamical density-matrix renormalization-group method” In Physical Review B 66.4 American Physical Society, 2002, pp. 045114 DOI: 10.1103/PhysRevB.66.045114
- Guifré Vidal “Efficient Classical Simulation of Slightly Entangled Quantum Computations” In Physical Review Letters 91.14 American Physical Society, 2003, pp. 147902 DOI: 10.1103/PhysRevLett.91.147902
- Guifré Vidal “Efficient Simulation of One-Dimensional Quantum Many-Body Systems” In Physical Review Letters 93.4 American Physical Society, 2004, pp. 040502 DOI: 10.1103/PhysRevLett.93.040502
- Steven R. White “Density matrix renormalization group algorithms with a single center site” In Physical Review B 72.18 American Physical Society, 2005, pp. 180403 DOI: 10.1103/PhysRevB.72.180403
- Ian P McCulloch “From density-matrix renormalization group to matrix product states” In Journal of Statistical Mechanics: Theory and Experiment 2007.10, 2007, pp. P10014 DOI: 10.1088/1742-5468/2007/10/P10014
- “Time-Dependent Variational Principle for Quantum Lattices” In Phys. Rev. Lett. 107 American Physical Society, 2011, pp. 070601 DOI: 10.1103/PhysRevLett.107.070601
- I.V. Oseledets “Tensor-Train Decomposition” In SIAM Journal on Scientific Computing 33.5 Society for IndustrialApplied Mathematics, 2011, pp. 2295–2317 DOI: 10.1137/090752286
- “Thermodynamic Limit of Density Matrix Renormalization” In Physical Review Letters 75.19 American Physical Society, 1995, pp. 3537–3540 DOI: 10.1103/PhysRevLett.75.3537
- “Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group” In Physical Review B 55.4 American Physical Society, 1997, pp. 2164–2181 DOI: 10.1103/PhysRevB.55.2164
- G. Vidal “Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension” In Physical Review Letters 98.7 American Physical Society, 2007, pp. 070201 DOI: 10.1103/PhysRevLett.98.070201
- “Infinite time-evolving block decimation algorithm beyond unitary evolution” In Physical Review B 78.15 American Physical Society, 2008, pp. 155117 DOI: 10.1103/PhysRevB.78.155117
- I.P. McCulloch “Infinite size density matrix renormalization group, revisited” arXiv:0804.2509 [cond-mat] type: article, 2008 DOI: 10.48550/arXiv.0804.2509
- “Transfer matrices and excitations with matrix product states” In New Journal of Physics 17.5 IOP Publishing, 2015, pp. 053002 DOI: 10.1088/1367-2630/17/5/053002
- “Variational optimization algorithms for uniform matrix product states” In Physical Review B 97.4 American Physical Society, 2018, pp. 045145 DOI: 10.1103/PhysRevB.97.045145
- Y.-Y. Shi, L.-M. Duan and G. Vidal “Classical simulation of quantum many-body systems with a tree tensor network” In Physical Review A 74.2 American Physical Society, 2006, pp. 022320 DOI: 10.1103/PhysRevA.74.022320
- “Time dependent variational principle for tree Tensor Networks” In SciPost Physics 8.2, 2020, pp. 024 DOI: 10.21468/SciPostPhys.8.2.024
- Benedikt Kloss, David Reichman and Yevgeny Bar Lev “Studying dynamics in two-dimensional quantum lattices using tree tensor network states” In SciPost Physics 9.5, 2020, pp. 070 DOI: 10.21468/SciPostPhys.9.5.070
- Gianluca Ceruti, Christian Lubich and Hanna Walach “Time Integration of Tree Tensor Networks” In SIAM Journal on Numerical Analysis 59.1 Society for IndustrialApplied Mathematics, 2021, pp. 289–313 DOI: 10.1137/20M1321838
- “Simulating quantum circuits using tree tensor networks” In Quantum 7 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 964 DOI: 10.22331/q-2023-03-30-964
- “A New Scheme for the Tensor Representation” In Journal of Fourier Analysis and Applications 15.5, 2009, pp. 706–722 DOI: 10.1007/s00041-009-9094-9
- L. Tagliacozzo, G. Evenbly and G. Vidal “Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law” In Physical Review B 80.23 American Physical Society, 2009, pp. 235127 DOI: 10.1103/PhysRevB.80.235127
- Lars Grasedyck “Hierarchical Singular Value Decomposition of Tensors” In SIAM Journal on Matrix Analysis and Applications 31.4 Society for IndustrialApplied Mathematics, 2010, pp. 2029–2054 DOI: 10.1137/090764189
- “Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors” In SIAM Journal on Matrix Analysis and Applications 34.2 Society for IndustrialApplied Mathematics, 2013, pp. 470–494 DOI: 10.1137/120885723
- “Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver” In Physical Review X 7.3 American Physical Society, 2017, pp. 031013 DOI: 10.1103/PhysRevX.7.031013
- “T3NS: Three-Legged Tree Tensor Network States” In Journal of Chemical Theory and Computation 14.4 American Chemical Society, 2018, pp. 2026–2033 DOI: 10.1021/acs.jctc.8b00098
- Natalia Chepiga and Steven R. White “Comb tensor networks” In Physical Review B 99.23 American Physical Society, 2019, pp. 235426 DOI: 10.1103/PhysRevB.99.235426
- Hiromi Otsuka “Density-matrix renormalization-group study of the spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG XXZ antiferromagnet on the Bethe lattice” In Physical Review B 53.21 American Physical Society, 1996, pp. 14004–14007 DOI: 10.1103/PhysRevB.53.14004
- Barry Friedman “A density matrix renormalization group approach to interacting quantum systems on Cayley trees” In Journal of Physics: Condensed Matter 9.42, 1997, pp. 9021 DOI: 10.1088/0953-8984/9/42/016
- M.-B. Lepetit, M. Cousy and G.M. Pastor “Density-matrix renormalization study of the Hubbard model [4]on a Bethe lattice” In The European Physical Journal B - Condensed Matter and Complex Systems 13.3, 2000, pp. 421–427 DOI: 10.1007/s100510050053
- “Quantum transverse-field Ising model on an infinite tree from matrix product states” In Physical Review B 77.21 American Physical Society, 2008, pp. 214431 DOI: 10.1103/PhysRevB.77.214431
- Manoranjan Kumar, S. Ramasesha and Zoltán G. Soos “Density matrix renormalization group algorithm for Bethe lattices of spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG or spin-1 sites with Heisenberg antiferromagnetic exchange” In Physical Review B 85.13 American Physical Society, 2012, pp. 134415 DOI: 10.1103/PhysRevB.85.134415
- Wei Li, Jan Delft and Tao Xiang “Efficient simulation of infinite tree tensor network states on the Bethe lattice” In Physical Review B 86.19 American Physical Society, 2012, pp. 195137 DOI: 10.1103/PhysRevB.86.195137
- Ádám Nagy “Simulating quantum systems on the Bethe lattice by translationally invariant infinite-tree tensor network” In Annals of Physics 327.2, 2012, pp. 542–552 DOI: 10.1016/j.aop.2011.11.012
- “Phase diagram of the isotropic spin-3232\frac{3}{2}divide start_ARG 3 end_ARG start_ARG 2 end_ARG model on the z=3𝑧3z=3italic_z = 3 Bethe lattice” In Physical Review B 88.3 American Physical Society, 2013, pp. 035138 DOI: 10.1103/PhysRevB.88.035138
- “Hubbard model on the Bethe lattice via variational uniform tree states: Metal-insulator transition and a Fermi liquid” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023054 DOI: 10.1103/PhysRevResearch.3.023054
- “Towards a polynomial algorithm for optimal contraction sequence of tensor networks from trees” In Phys. Rev. E 100 American Physical Society, 2019, pp. 043309 DOI: 10.1103/PhysRevE.100.043309
- Mihail Stoian “On the Optimal Linear Contraction Order for Tree Tensor Networks”, 2023 arXiv:2209.12332 [quant-ph]
- “Matrix product state representations” In Quantum Information & Computation 7.5, 2007, pp. 401–430
- Jutho Haegeman, Tobias J. Osborne and Frank Verstraete “Post-matrix product state methods: To tangent space and beyond” In Phys. Rev. B 88 American Physical Society, 2013, pp. 075133 DOI: 10.1103/PhysRevB.88.075133
- “Geometry of matrix product states: Metric, parallel transport, and curvature” 021902 In Journal of Mathematical Physics 55.2, 2014 DOI: 10.1063/1.4862851
- C. Hubig, J. Haegeman and U. Schollwöck “Error estimates for extrapolations with matrix-product states” In Physical Review B 97.4 American Physical Society, 2018, pp. 045125 DOI: 10.1103/PhysRevB.97.045125
- Andreas Gleis, Jheng-Wei Li and Jan Delft “Projector formalism for kept and discarded spaces of matrix product states” In Physical Review B 106.19 American Physical Society, 2022, pp. 195138 DOI: 10.1103/PhysRevB.106.195138
- “The geometry of algorithms using hierarchical tensors” In Linear Algebra and its Applications 439.1, 2013, pp. 133–166 DOI: 10.1016/j.laa.2013.03.016
- F. Verstraete, D. Porras and J.I. Cirac “Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective” In Physical Review Letters 93.22 American Physical Society, 2004, pp. 227205 DOI: 10.1103/PhysRevLett.93.227205
- Peter Pippan, Steven R. White and Hans Gerd Evertz “Efficient matrix-product state method for periodic boundary conditions” In Physical Review B 81.8 American Physical Society, 2010, pp. 081103 DOI: 10.1103/PhysRevB.81.081103
- “Tensor Ring Decomposition” arXiv:1606.05535 [cs] type: article, 2016 DOI: 10.48550/arXiv.1606.05535
- “On algorithms for and computing with the tensor ring decomposition” In Numerical Linear Algebra with Applications 27.3, 2020, pp. e2289 DOI: 10.1002/nla.2289
- “Two-Dimensional Tensor Product Variational Formulation” In Progress of Theoretical Physics 105.3, 2001, pp. 409–417 DOI: 10.1143/PTP.105.409
- “Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing” In Physical Review B 92.3 American Physical Society, 2015, pp. 035142 DOI: 10.1103/PhysRevB.92.035142
- Saeed S. Jahromi and Román Orús “Universal tensor-network algorithm for any infinite lattice” In Physical Review B 99.19 American Physical Society, 2019, pp. 195105 DOI: 10.1103/PhysRevB.99.195105
- Patrick C.G. Vlaar and Philippe Corboz “Simulation of three-dimensional quantum systems with projected entangled-pair states” In Physical Review B 103.20 American Physical Society, 2021, pp. 205137 DOI: 10.1103/PhysRevB.103.205137
- “Vertical density matrix algorithm: A higher-dimensional numerical renormalization scheme based on the tensor product state ansatz” In Physical Review E 64.1 American Physical Society, 2001, pp. 016705 DOI: 10.1103/PhysRevE.64.016705
- “Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions” arXiv:cond-mat/0407066 type: article, 2004 DOI: 10.48550/arXiv.cond-mat/0407066
- “Tensor Product Variational Formulation for Quantum Systems” arXiv:cond-mat/0401115 type: article, 2004 DOI: 10.48550/arXiv.cond-mat/0401115
- H.C. Jiang, Z.Y. Weng and T. Xiang “Accurate Determination of Tensor Network State of Quantum Lattice Models in Two Dimensions” In Physical Review Letters 101.9 American Physical Society, 2008, pp. 090603 DOI: 10.1103/PhysRevLett.101.090603
- “Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions” In Physical Review Letters 101.25 American Physical Society, 2008, pp. 250602 DOI: 10.1103/PhysRevLett.101.250602
- “Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction” In Physical Review B 80.9 American Physical Society, 2009, pp. 094403 DOI: 10.1103/PhysRevB.80.094403
- “Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states” In Physical Review B 81.16 American Physical Society, 2010, pp. 165104 DOI: 10.1103/PhysRevB.81.165104
- “Fate of the cluster state on the square lattice in a magnetic field” In Physical Review A 86.2 American Physical Society, 2012, pp. 022317 DOI: 10.1103/PhysRevA.86.022317
- “Computational Complexity of Projected Entangled Pair States” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 140506 DOI: 10.1103/PhysRevLett.98.140506
- Reza Haghshenas, Matthew J. O’Rourke and Garnet Kin-Lic Chan “Conversion of projected entangled pair states into a canonical form” In Physical Review B 100.5 American Physical Society, 2019, pp. 054404 DOI: 10.1103/PhysRevB.100.054404
- “Isometric tensor network representation of string-net liquids” In Physical Review B 101.8 American Physical Society, 2020, pp. 085117 DOI: 10.1103/PhysRevB.101.085117
- Michael P. Zaletel and Frank Pollmann “Isometric Tensor Network States in Two Dimensions” In Physical Review Letters 124.3 American Physical Society, 2020, pp. 037201 DOI: 10.1103/PhysRevLett.124.037201
- “DMRG Approach to Optimizing Two-Dimensional Tensor Networks”, 2020 arXiv:1908.08833 [cond-mat.str-el]
- Maurits S.J. Tepaske and David J. Luitz “Three-dimensional isometric tensor networks” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023236 DOI: 10.1103/PhysRevResearch.3.023236
- Sheng-Hsuan Lin, Michael P. Zaletel and Frank Pollmann “Efficient simulation of dynamics in two-dimensional quantum spin systems with isometric tensor networks” In Physical Review B 106.24 American Physical Society, 2022, pp. 245102 DOI: 10.1103/PhysRevB.106.245102
- “The minimal canonical form of a tensor network”, 2022 arXiv:2209.14358 [quant-ph]
- “Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models” In Physical Review B 86.13 American Physical Society, 2012, pp. 134429 DOI: 10.1103/PhysRevB.86.134429
- Michael Lubasch, J.Ignacio Cirac and Mari-Carmen Bañuls “Algorithms for finite projected entangled pair states” In Physical Review B 90.6 American Physical Society, 2014, pp. 064425 DOI: 10.1103/PhysRevB.90.064425
- Ho N. Phien, Ian P. McCulloch and Guifré Vidal “Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment” In Physical Review B 91.11 American Physical Society, 2015, pp. 115137 DOI: 10.1103/PhysRevB.91.115137
- Shuo Yang, Zheng-Cheng Gu and Xiao-Gang Wen “Loop Optimization for Tensor Network Renormalization” In Physical Review Letters 118.11 American Physical Society, 2017, pp. 110504 DOI: 10.1103/PhysRevLett.118.110504
- Kenji Harada “Entanglement branching operator” In Physical Review B 97.4 American Physical Society, 2018, pp. 045124 DOI: 10.1103/PhysRevB.97.045124
- Markus Hauru, Clement Delcamp and Sebastian Mizera “Renormalization of tensor networks using graph-independent local truncations” In Physical Review B 97.4 American Physical Society, 2018, pp. 045111 DOI: 10.1103/PhysRevB.97.045111
- Glen Evenbly “Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops” In Physical Review B 98.8 American Physical Society, 2018, pp. 085155 DOI: 10.1103/PhysRevB.98.085155
- “Graded Projected Entangled-Pair State Representations and An Algorithm for Translationally Invariant Strongly Correlated Electronic Systems on Infinite-Size Lattices in Two Spatial Dimensions” arXiv:0907.5520 [cond-mat] type: article, 2009 DOI: 10.48550/arXiv.0907.5520
- “Tensor Network Methods for Extracting CFT Data from Fixed-Point Tensors and Defect Coarse Graining”, 2023 arXiv:2305.09899 [cond-mat.stat-mech]
- Judea Pearl “Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach” In Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI’82 Pittsburgh, Pennsylvania: AAAI Press, 1982, pp. 133–136
- Judea Pearl “Fusion, propagation, and structuring in belief networks” In Artificial Intelligence 29.3, 1986, pp. 241–288 DOI: https://doi.org/10.1016/0004-3702(86)90072-X
- J.S. Yedidia, W.T. Freeman and Y. Weiss “Constructing free-energy approximations and generalized belief propagation algorithms” In IEEE Transactions on Information Theory 51.7, 2005, pp. 2282–2312 DOI: 10.1109/TIT.2005.850085
- Jonathan S. Yedidia, William T. Freeman and Yair Weiss “Understanding Belief Propagation and Its Generalizations” In Exploring Artificial Intelligence in the New Millennium San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 239–269
- “Quantum Graphical Models and Belief Propagation” In Annals of Physics 323.8, 2008, pp. 1899–1946 DOI: https://doi.org/10.1016/j.aop.2007.10.001
- “Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs” In Phys. Rev. A 77 American Physical Society, 2008, pp. 052318 DOI: 10.1103/PhysRevA.77.052318
- Andrew Wrigley, Wee Sun Lee and Nan Ye “Tensor Belief Propagation” In Proceedings of the 34th International Conference on Machine Learning 70, Proceedings of Machine Learning Research PMLR, 2017, pp. 3771–3779 URL: https://proceedings.mlr.press/v70/wrigley17a.html
- “Duality of graphical models and tensor networks” In Information and Inference: A Journal of the IMA 8.2, 2018, pp. 273–288 DOI: 10.1093/imaiai/iay009
- “Efficient tensor network simulation of quantum many-body physics on sparse graphs”, 2022 arXiv:2206.04701 [quant-ph]
- Chu Guo, Dario Poletti and Itai Arad “Block Belief Propagation Algorithm for 2D Tensor Networks”, 2023 arXiv:2301.05844 [quant-ph]
- “One-step replica symmetry breaking in the language of tensor networks” arXiv:2306.15004 [cond-mat, physics:physics, physics:quant-ph] type: article, 2023 DOI: 10.48550/arXiv.2306.15004
- “Tensor Network Message Passing” arXiv:2305.01874 [cond-mat, physics:physics] type: article, 2023 DOI: 10.48550/arXiv.2305.01874
- “Tensor networks contraction and the belief propagation algorithm” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023073 DOI: 10.1103/PhysRevResearch.3.023073
- Jonathan S Yedidia, William Freeman and Yair Weiss “Generalized Belief Propagation” In Advances in Neural Information Processing Systems 13 MIT Press, 2000 URL: https://proceedings.neurips.cc/paper_files/paper/2000/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
- Michael Lubasch, J.Ignacio Cirac and Mari-Carmen Bañuls “Unifying projected entangled pair state contractions” In New Journal of Physics 16.3 IOP Publishing, 2014, pp. 033014 DOI: 10.1088/1367-2630/16/3/033014
- “Corner Transfer Matrix Renormalization Group Method” In Journal of the Physical Society of Japan 65.4 The Physical Society of Japan, 1996, pp. 891–894 DOI: 10.1143/JPSJ.65.891
- Román Orús “Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems” In Physical Review B 85.20 American Physical Society, 2012, pp. 205117 DOI: 10.1103/PhysRevB.85.205117
- Philippe Corboz, T.M. Rice and Matthias Troyer “Competing States in the t𝑡titalic_t-J𝐽Jitalic_J Model: Uniform d𝑑ditalic_d-Wave State versus Stripe State” In Physical Review Letters 113.4 American Physical Society, 2014, pp. 046402 DOI: 10.1103/PhysRevLett.113.046402
- “Faster methods for contracting infinite two-dimensional tensor networks” In Physical Review B 98.23 American Physical Society, 2018, pp. 235148 DOI: 10.1103/PhysRevB.98.235148
- George T. Cantwell and M.E.J. Newman “Message passing on networks with loops” In Proceedings of the National Academy of Sciences 116.47, 2019, pp. 23398–23403 DOI: 10.1073/pnas.1914893116
- Alec Kirkley, George T. Cantwell and M.E.J. Newman “Belief propagation for networks with loops” In Science Advances 7.17, 2021, pp. eabf1211 DOI: 10.1126/sciadv.abf1211
- “Large deviations in stochastic dynamics over graphs through Matrix Product Belief Propagation”, 2023 arXiv:2303.17403 [cond-mat.stat-mech]
- Michael Levin and Cody P. Nave “Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models” In Phys. Rev. Lett. 99 American Physical Society, 2007, pp. 120601 DOI: 10.1103/PhysRevLett.99.120601
- “Tensor Network Renormalization” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 180405 DOI: 10.1103/PhysRevLett.115.180405
- Shuo Yang, Zheng-Cheng Gu and Xiao-Gang Wen “Loop Optimization for Tensor Network Renormalization” In Phys. Rev. Lett. 118 American Physical Society, 2017, pp. 110504 DOI: 10.1103/PhysRevLett.118.110504
- “Contracting Arbitrary Tensor Networks: General Approximate Algorithm and Applications in Graphical Models and Quantum Circuit Simulations” In Phys. Rev. Lett. 125 American Physical Society, 2020, pp. 060503 DOI: 10.1103/PhysRevLett.125.060503
- Christopher T. Chubb “General tensor network decoding of 2D Pauli codes”, 2021 arXiv:2101.04125 [quant-ph]
- Cupjin Huang, Michael Newman and Mario Szegedy “Explicit Lower Bounds on Strong Quantum Simulation” In IEEE Transactions on Information Theory 66.9, 2020, pp. 5585–5600 DOI: 10.1109/TIT.2020.3004427
- The authors would like to thank Johnnie Gray for pointing this out to us during the preparation of this work.
- “ITensorNetworks.jl”, https://github.com/mtfishman/ITensorNetworks.jl, 2023
- A.I.V. Casado, M. Griot and R.D. Wesel “Informed Dynamic Scheduling for Belief-Propagation Decoding of LDPC Codes” In 2007 IEEE International Conference on Communications, 2007, pp. 932–937 DOI: 10.1109/ICC.2007.158
- “Serial Schedules for Belief-Propagation: Analysis of Convergence Time” In IEEE Transactions on Information Theory 54.3, 2008, pp. 1316–1319 DOI: 10.1109/TIT.2007.915702
- “Finding Exponential Product Formulas of Higher Orders” In Quantum Annealing and Other Optimization Methods Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 37–68 DOI: 10.1007/11526216_2
- “Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States” In Physical Review Letters 96.22 American Physical Society, 2006, pp. 220601 DOI: 10.1103/PhysRevLett.96.220601
- Tappen and Freeman “Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters” In Proceedings Ninth IEEE International Conference on Computer Vision, 2003, pp. 900–906 vol.2 DOI: 10.1109/ICCV.2003.1238444
- M.J. Wainwright, T.S. Jaakkola and A.S. Willsky “Tree-based reparameterization framework for analysis of sum-product and related algorithms” In IEEE Transactions on Information Theory 49.5, 2003, pp. 1120–1146 DOI: 10.1109/TIT.2003.810642
- Gal Elidan, Ian McGraw and Daphne Koller “Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing” In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, UAI’06 Cambridge, MA, USA: AUAI Press, 2006, pp. 165–173
- C.St.J.A. Nash-Williams “Decomposition of Finite Graphs Into Forests” In Journal of the London Mathematical Society s1-39.1, 1964, pp. 12–12 DOI: 10.1112/jlms/s1-39.1.12
- Saeed S. Jahromi and Román Orús “Thermal bosons in 3d optical lattices via tensor networks” In Scientific Reports 10.1 Nature Publishing Group, 2020, pp. 19051 DOI: 10.1038/s41598-020-75548-x
- Saeed S. Jahromi, Hadi Yarloo and Román Orús “Thermodynamics of three-dimensional Kitaev quantum spin liquids via tensor networks” In Physical Review Research 3.3 American Physical Society, 2021, pp. 033205 DOI: 10.1103/PhysRevResearch.3.033205
- “Thermal Ising Transition in the Spin-1/2121/21 / 2 J1subscript𝐽1{J}_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-J2subscript𝐽2{J}_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Heisenberg Model” In Phys. Rev. Lett. 128 American Physical Society, 2022, pp. 227202 DOI: 10.1103/PhysRevLett.128.227202
- V. Murg, F. Verstraete and J.I. Cirac “Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states” In Physical Review A 75.3 American Physical Society, 2007, pp. 033605 DOI: 10.1103/PhysRevA.75.033605
- Philippe Corboz “Variational optimization with infinite projected entangled-pair states” In Physical Review B 94.3 American Physical Society, 2016, pp. 035133 DOI: 10.1103/PhysRevB.94.035133
- “Gradient methods for variational optimization of projected entangled-pair states” In Physical Review B 94.15 American Physical Society, 2016, pp. 155123 DOI: 10.1103/PhysRevB.94.155123
- “Differentiable Programming Tensor Networks” In Physical Review X 9.3 American Physical Society, 2019, pp. 031041 DOI: 10.1103/PhysRevX.9.031041
- Markus Scheb and Reinhard M. Noack “Finite Projected Entangled Pair States for the Hubbard model” arXiv:2302.04192 [cond-mat] In Physical Review B 107.16, 2023, pp. 165112 DOI: 10.1103/PhysRevB.107.165112
- Jacek Dziarmaga “Time evolution of an infinite projected entangled pair state: Neighborhood tensor update” In Physical Review B 104.9 American Physical Society, 2021, pp. 094411 DOI: 10.1103/PhysRevB.104.094411
- “Evidence for the utility of quantum computing before fault tolerance” In Nature 618.7965, 2023, pp. 500–505 DOI: 10.1038/s41586-023-06096-3
- Tomislav Begušić, Johnnie Gray and Garnet Kin-Lic Chan “Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance”, 2023 arXiv:2308.05077 [quant-ph]
- “Density Matrix Renormalization Group with Tensor Processing Units” arXiv:2204.05693 [cond-mat, physics:quant-ph] type: article, 2022 DOI: 10.48550/arXiv.2204.05693
- “Julia: A fresh approach to numerical computing” In SIAM review 59.1 SIAM, 2017, pp. 65–98 DOI: https://doi.org/10.1137/141000671
- Matthew Fishman, Steven R. White and E.Miles Stoudenmire “Codebase release 0.3 for ITensor” In SciPost Phys. Codebases SciPost, 2022, pp. 4–r0.3 DOI: 10.21468/SciPostPhysCodeb.4-r0.3
- “GraphTikz.jl”, https://github.com/mtfishman/GraphTikZ.jl, 2023
- Ling Wang, Iztok Pižorn and Frank Verstraete “Monte Carlo simulation with tensor network states” In Physical Review B 83.13 American Physical Society, 2011, pp. 134421 DOI: 10.1103/PhysRevB.83.134421
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.