Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Gauging tensor networks with belief propagation (2306.17837v5)

Published 30 Jun 2023 in quant-ph

Abstract: Effectively compressing and optimizing tensor networks requires reliable methods for fixing the latent degrees of freedom of the tensors, known as the gauge. Here we introduce a new algorithm for gauging tensor networks using belief propagation, a method that was originally formulated for performing statistical inference on graphical models and has recently found applications in tensor network algorithms. We show that this method is closely related to known tensor network gauging methods. It has the practical advantage, however, that existing belief propagation implementations can be repurposed for tensor network gauging, and that belief propagation is a very simple algorithm based on just tensor contractions so it can be easier to implement, optimize, and generalize. We present numerical evidence and scaling arguments that this algorithm is faster than existing gauging algorithms, demonstrating its usage on structured, unstructured, and infinite tensor networks. Additionally, we apply this method to improve the accuracy of the widely used simple update gate evolution algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (194)
  1. F. Verstraete, V. Murg and J.I. Cirac “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems” In Advances in Physics 57.2 Taylor & Francis, 2008, pp. 143–224 DOI: 10.1080/14789940801912366
  2. Laurens Vanderstraeten, Jutho Haegeman and Frank Verstraete “Tangent-space methods for uniform matrix product states” In SciPost Physics Lecture Notes, 2019, pp. 007 DOI: 10.21468/SciPostPhysLectNotes.7
  3. “Matrix product states and projected entangled pair states: Concepts, symmetries, theorems” In Rev. Mod. Phys. 93 American Physical Society, 2021, pp. 045003 DOI: 10.1103/RevModPhys.93.045003
  4. “The Tensor Network: Resources for tensor network algorithms, theory, and software” In Tensor Network URL: https://tensornetwork.org
  5. Glen Evenbly “Tensors.net: Resources for learning and implementing tensor network methods to study quantum many-body systems.” In Tensors.net URL: https://www.tensors.net
  6. Ulrich Schollwöck “The density-matrix renormalization group in the age of matrix product states” January 2011 Special Issue In Annals of Physics 326.1, 2011, pp. 96–192 DOI: https://doi.org/10.1016/j.aop.2010.09.012
  7. Román Orús “A practical introduction to tensor networks: Matrix product states and projected entangled pair states” arXiv:1306.2164 [cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph] In Annals of Physics 349, 2014, pp. 117–158 DOI: 10.1016/j.aop.2014.06.013
  8. Andrzej Cichocki “Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems” arXiv:1407.3124 [cs, math] type: article, 2014 DOI: 10.48550/arXiv.1407.3124
  9. “Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions” In Foundations and Trends® in Machine Learning 9.4-5 Now Publishers, Inc., 2016, pp. 249–429 DOI: 10.1561/2200000059
  10. Jacob C. Bridgeman and Christopher T. Chubb “Hand-waving and interpretive dance: an introductory course on tensor networks” In Journal of Physics A: Mathematical and Theoretical 50.22 IOP Publishing, 2017, pp. 223001 DOI: 10.1088/1751-8121/aa6dc3
  11. “Diagonalizing Transfer Matrices and Matrix Product Operators: A Medley of Exact and Computational Methods” In Annual Review of Condensed Matter Physics 8.1, 2017, pp. 355–406 DOI: 10.1146/annurev-conmatphys-031016-025507
  12. “Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives” In Foundations and Trends® in Machine Learning 9.6 Now Publishers, Inc., 2017, pp. 431–673 DOI: 10.1561/2200000067
  13. Román Orús “Tensor networks for complex quantum systems” arXiv:1812.04011 [cond-mat, physics:hep-lat, physics:quant-ph] In Nature Reviews Physics 1.9 Nature Publishing Group, 2019, pp. 538–550 DOI: 10.1038/s42254-019-0086-7
  14. Simeng Yan, David A. Huse and Steven R. White “Spin-Liquid Ground State of the S=1/2𝑆12S=1/2italic_S = 1 / 2 Kagome Heisenberg Antiferromagnet” In Science 332.6034, 2011, pp. 1173–1176 DOI: 10.1126/science.1201080
  15. Stefan Depenbrock, Ian P. McCulloch and Ulrich Schollwöck “Nature of the Spin-Liquid Ground State of the S=1/2𝑆12{S}=1/2italic_S = 1 / 2 Heisenberg Model on the Kagome Lattice” In Physical Review Letters 109.6 American Physical Society, 2012, pp. 067201 DOI: 10.1103/PhysRevLett.109.067201
  16. “Phase diagram of the J1−J2subscript𝐽1subscript𝐽2J_{1}-J_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Heisenberg model on the kagome lattice” In Physical Review B 91.10 American Physical Society, 2015, pp. 104418 DOI: 10.1103/PhysRevB.91.104418
  17. “Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms” In Physical Review X 5.4 American Physical Society, 2015, pp. 041041 DOI: 10.1103/PhysRevX.5.041041
  18. “Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model” In Physical Review X 7.3 American Physical Society, 2017, pp. 031020 DOI: 10.1103/PhysRevX.7.031020
  19. “Stripe order in the underdoped region of the two-dimensional Hubbard model” In Science 358.6367, 2017, pp. 1155–1160 DOI: 10.1126/science.aam7127
  20. “Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model” In Physical Review X 10.3 American Physical Society, 2020, pp. 031016 DOI: 10.1103/PhysRevX.10.031016
  21. “Coexistence of superconductivity with partially filled stripes in the Hubbard model” arXiv:2303.08376 [cond-mat, physics:physics] type: article, 2023 DOI: 10.48550/arXiv.2303.08376
  22. Steven R. White and Richard L. Martin “Ab initio quantum chemistry using the density matrix renormalization group” In The Journal of Chemical Physics 110.9 American Institute of Physics, 1999, pp. 4127–4130 DOI: 10.1063/1.478295
  23. “The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges” In The Journal of Chemical Physics 152.4 American Institute of Physics, 2020, pp. 040903 DOI: 10.1063/1.5129672
  24. Garnet Kin-Lic Chan and Sandeep Sharma “The Density Matrix Renormalization Group in Quantum Chemistry” In Annual Review of Physical Chemistry 62.1, 2011, pp. 465–481 DOI: 10.1146/annurev-physchem-032210-103338
  25. Naoki Nakatani and Garnet Kin-Lic Chan “Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm” In The Journal of Chemical Physics 138.13 American Institute of Physics, 2013, pp. 134113 DOI: 10.1063/1.4798639
  26. Yuki Kurashige, Garnet Kin-Lic Chan and Takeshi Yanai “Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II” In Nature Chemistry 5.8 Nature Publishing Group, 2013, pp. 660–666 DOI: 10.1038/nchem.1677
  27. “Tensor product methods and entanglement optimization for ab initio quantum chemistry” arXiv:1412.5829 [cond-mat, physics:math-ph, physics:physics, physics:quant-ph] In International Journal of Quantum Chemistry 115.19, 2015, pp. 1342–1391 DOI: 10.1002/qua.24898
  28. Yiqing Zhou, E.Miles Stoudenmire and Xavier Waintal “What Limits the Simulation of Quantum Computers?” In Physical Review X 10.4 American Physical Society, 2020, pp. 041038 DOI: 10.1103/PhysRevX.10.041038
  29. “Hyper-optimized tensor network contraction” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 410 DOI: 10.22331/q-2021-03-15-410
  30. Jielun Chen, E.M. Stoudenmire and Steven R. White “The Quantum Fourier Transform Has Small Entanglement” arXiv:2210.08468 [quant-ph] type: article, 2022 DOI: 10.48550/arXiv.2210.08468
  31. “Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method” In Physical Review Letters 128.3 American Physical Society, 2022, pp. 030501 DOI: 10.1103/PhysRevLett.128.030501
  32. Feng Pan, Keyang Chen and Pan Zhang “Solving the Sampling Problem of the Sycamore Quantum Circuits” In Physical Review Letters 129.9 American Physical Society, 2022, pp. 090502 DOI: 10.1103/PhysRevLett.129.090502
  33. “Density-Matrix Renormalization Group Algorithm for Simulating Quantum Circuits with a Finite Fidelity” In PRX Quantum 4.2 American Physical Society, 2023, pp. 020304 DOI: 10.1103/PRXQuantum.4.020304
  34. “Efficient tensor network simulation of IBM’s kicked Ising experiment”, 2023 arXiv:2306.14887 [quant-ph]
  35. Edwin Stoudenmire and David J Schwab “Supervised Learning with Tensor Networks” In Advances in Neural Information Processing Systems 29 Curran Associates, Inc., 2016 URL: https://papers.nips.cc/paper_files/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
  36. “Unsupervised Generative Modeling Using Matrix Product States” In Physical Review X 8.3 American Physical Society, 2018, pp. 031012 DOI: 10.1103/PhysRevX.8.031012
  37. “Machine learning by unitary tensor network of hierarchical tree structure” In New Journal of Physics 21.7 IOP Publishing, 2019, pp. 073059 DOI: 10.1088/1367-2630/ab31ef
  38. “Towards quantum machine learning with tensor networks” In Quantum Science and Technology 4.2 IOP Publishing, 2019, pp. 024001 DOI: 10.1088/2058-9565/aaea94
  39. I.V. Oseledets “Approximation of 2d×2dsuperscript2𝑑superscript2𝑑2^{d}\times 2^{d}2 start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT × 2 start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT Matrices Using Tensor Decomposition” In SIAM Journal on Matrix Analysis and Applications 31.4, 2010, pp. 2130–2145 DOI: 10.1137/090757861
  40. Boris N. Khoromskij “O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling” In Constructive Approximation 34.2, 2011, pp. 257–280 DOI: 10.1007/s00365-011-9131-1
  41. S.V. Dolgov, B.N. Khoromskij and I.V. Oseledets “Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker–Planck Equation” In SIAM Journal on Scientific Computing 34.6 Society for IndustrialApplied Mathematics, 2012, pp. A3016–A3038 DOI: 10.1137/120864210
  42. Boris N. Khoromskij “Tensor Numerical Methods for High-dimensional PDEs: Basic Theory and Initial Applications” arXiv:1408.4053 [math] type: article, 2014 DOI: 10.48550/arXiv.1408.4053
  43. Michael Lubasch, Pierre Moinier and Dieter Jaksch “Multigrid renormalization” In Journal of Computational Physics 372, 2018, pp. 587–602 DOI: 10.1016/j.jcp.2018.06.065
  44. Juan José García-Ripoll “Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 431 DOI: 10.22331/q-2021-04-15-431
  45. Lorenz Richter, Leon Sallandt and Nikolas Nüsken “Solving high-dimensional parabolic PDEs using the tensor train format” PMLR, 2021, pp. 8998–9009 URL: https://proceedings.mlr.press/v139/richter21a.html
  46. “A quantum-inspired approach to exploit turbulence structures” In Nature Computational Science 2.1 Nature Publishing Group, 2022, pp. 30–37 DOI: 10.1038/s43588-021-00181-1
  47. Nikita Gourianov “Exploiting the structure of turbulence with tensor networks” University of Oxford, 2022 URL: https://ora.ox.ac.uk/objects/uuid:9e3f4786-ad68-4913-9a0d-e9b1e108128f
  48. Jacob D. Biamonte, Jason Morton and Jacob Turner “Tensor Network Contractions for #SAT” In Journal of Statistical Physics 160.5, 2015, pp. 1389–1404 DOI: 10.1007/s10955-015-1276-z
  49. “Fast counting with tensor networks” In SciPost Physics 7.5, 2019, pp. 060 DOI: 10.21468/SciPostPhys.7.5.060
  50. “Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks” In Physical Review Research 4.1 American Physical Society, 2022, pp. 013006 DOI: 10.1103/PhysRevResearch.4.013006
  51. “Application of Tensor Neural Networks to Pricing Bermudan Swaptions” arXiv:2304.09750 [quant-ph, q-fin] type: article, 2023 DOI: 10.48550/arXiv.2304.09750
  52. Steven R. White “Density matrix formulation for quantum renormalization groups” In Physical Review Letters 69.19 American Physical Society, 1992, pp. 2863–2866 DOI: 10.1103/PhysRevLett.69.2863
  53. Sebastian Holtz, Thorsten Rohwedder and Reinhold Schneider “The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format” In SIAM Journal on Scientific Computing 34.2 Society for IndustrialApplied Mathematics, 2012, pp. A683–A713 DOI: 10.1137/100818893
  54. “Solution of Linear Systems and Matrix Inversion in the TT-Format” In SIAM Journal on Scientific Computing 34.5, 2012, pp. A2718–A2739 DOI: 10.1137/110833142
  55. S.V. Dolgov “TT-GMRES: solution to a linear system in the structured tensor format” In Russian Journal of Numerical Analysis and Mathematical Modelling 28.2 De Gruyter, 2013, pp. 149–172 DOI: 10.1515/rnam-2013-0009
  56. Sergey V. Dolgov and Dmitry V. Savostyanov “Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions” In SIAM Journal on Scientific Computing 36.5 Society for IndustrialApplied Mathematics, 2014, pp. A2248–A2271 DOI: 10.1137/140953289
  57. Sergey V. Dolgov and Dmitry V. Savostyanov “Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm” In Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes in Computational Science and Engineering Cham: Springer International Publishing, 2015, pp. 335–343 DOI: 10.1007/978-3-319-10705-9_33
  58. Christian Lubich, Ivan V. Oseledets and Bart Vandereycken “Time Integration of Tensor Trains” In SIAM Journal on Numerical Analysis 53.2, 2015, pp. 917–941 DOI: 10.1137/140976546
  59. “Strictly single-site DMRG algorithm with subspace expansion” In Physical Review B 91.15 American Physical Society, 2015, pp. 155115 DOI: 10.1103/PhysRevB.91.155115
  60. Vedika Khemani, Frank Pollmann and S.L. Sondhi “Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach” In Phys. Rev. Lett. 116 American Physical Society, 2016, pp. 247204 DOI: 10.1103/PhysRevLett.116.247204
  61. Steven R. White “Density-matrix algorithms for quantum renormalization groups” In Physical Review B 48.14 American Physical Society, 1993, pp. 10345–10356 DOI: 10.1103/PhysRevB.48.10345
  62. “Unifying time evolution and optimization with matrix product states” In Physical Review B 94.16 American Physical Society, 2016, pp. 165116 DOI: 10.1103/PhysRevB.94.165116
  63. Brenden Roberts, Thomas Vidick and Olexei I. Motrunich “Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians” In Phys. Rev. B 96 American Physical Society, 2017, pp. 214203 DOI: 10.1103/PhysRevB.96.214203
  64. Sergey V. Dolgov “A Tensor Decomposition Algorithm for Large ODEs with Conservation Laws” In Computational Methods in Applied Mathematics 19.1 De Gruyter, 2019, pp. 23–38 DOI: 10.1515/cmam-2018-0023
  65. Eric Jeckelmann “Dynamical density-matrix renormalization-group method” In Physical Review B 66.4 American Physical Society, 2002, pp. 045114 DOI: 10.1103/PhysRevB.66.045114
  66. Guifré Vidal “Efficient Classical Simulation of Slightly Entangled Quantum Computations” In Physical Review Letters 91.14 American Physical Society, 2003, pp. 147902 DOI: 10.1103/PhysRevLett.91.147902
  67. Guifré Vidal “Efficient Simulation of One-Dimensional Quantum Many-Body Systems” In Physical Review Letters 93.4 American Physical Society, 2004, pp. 040502 DOI: 10.1103/PhysRevLett.93.040502
  68. Steven R. White “Density matrix renormalization group algorithms with a single center site” In Physical Review B 72.18 American Physical Society, 2005, pp. 180403 DOI: 10.1103/PhysRevB.72.180403
  69. Ian P McCulloch “From density-matrix renormalization group to matrix product states” In Journal of Statistical Mechanics: Theory and Experiment 2007.10, 2007, pp. P10014 DOI: 10.1088/1742-5468/2007/10/P10014
  70. “Time-Dependent Variational Principle for Quantum Lattices” In Phys. Rev. Lett. 107 American Physical Society, 2011, pp. 070601 DOI: 10.1103/PhysRevLett.107.070601
  71. I.V. Oseledets “Tensor-Train Decomposition” In SIAM Journal on Scientific Computing 33.5 Society for IndustrialApplied Mathematics, 2011, pp. 2295–2317 DOI: 10.1137/090752286
  72. “Thermodynamic Limit of Density Matrix Renormalization” In Physical Review Letters 75.19 American Physical Society, 1995, pp. 3537–3540 DOI: 10.1103/PhysRevLett.75.3537
  73. “Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group” In Physical Review B 55.4 American Physical Society, 1997, pp. 2164–2181 DOI: 10.1103/PhysRevB.55.2164
  74. G. Vidal “Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension” In Physical Review Letters 98.7 American Physical Society, 2007, pp. 070201 DOI: 10.1103/PhysRevLett.98.070201
  75. “Infinite time-evolving block decimation algorithm beyond unitary evolution” In Physical Review B 78.15 American Physical Society, 2008, pp. 155117 DOI: 10.1103/PhysRevB.78.155117
  76. I.P. McCulloch “Infinite size density matrix renormalization group, revisited” arXiv:0804.2509 [cond-mat] type: article, 2008 DOI: 10.48550/arXiv.0804.2509
  77. “Transfer matrices and excitations with matrix product states” In New Journal of Physics 17.5 IOP Publishing, 2015, pp. 053002 DOI: 10.1088/1367-2630/17/5/053002
  78. “Variational optimization algorithms for uniform matrix product states” In Physical Review B 97.4 American Physical Society, 2018, pp. 045145 DOI: 10.1103/PhysRevB.97.045145
  79. Y.-Y. Shi, L.-M. Duan and G. Vidal “Classical simulation of quantum many-body systems with a tree tensor network” In Physical Review A 74.2 American Physical Society, 2006, pp. 022320 DOI: 10.1103/PhysRevA.74.022320
  80. “Time dependent variational principle for tree Tensor Networks” In SciPost Physics 8.2, 2020, pp. 024 DOI: 10.21468/SciPostPhys.8.2.024
  81. Benedikt Kloss, David Reichman and Yevgeny Bar Lev “Studying dynamics in two-dimensional quantum lattices using tree tensor network states” In SciPost Physics 9.5, 2020, pp. 070 DOI: 10.21468/SciPostPhys.9.5.070
  82. Gianluca Ceruti, Christian Lubich and Hanna Walach “Time Integration of Tree Tensor Networks” In SIAM Journal on Numerical Analysis 59.1 Society for IndustrialApplied Mathematics, 2021, pp. 289–313 DOI: 10.1137/20M1321838
  83. “Simulating quantum circuits using tree tensor networks” In Quantum 7 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 964 DOI: 10.22331/q-2023-03-30-964
  84. “A New Scheme for the Tensor Representation” In Journal of Fourier Analysis and Applications 15.5, 2009, pp. 706–722 DOI: 10.1007/s00041-009-9094-9
  85. L. Tagliacozzo, G. Evenbly and G. Vidal “Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law” In Physical Review B 80.23 American Physical Society, 2009, pp. 235127 DOI: 10.1103/PhysRevB.80.235127
  86. Lars Grasedyck “Hierarchical Singular Value Decomposition of Tensors” In SIAM Journal on Matrix Analysis and Applications 31.4 Society for IndustrialApplied Mathematics, 2010, pp. 2029–2054 DOI: 10.1137/090764189
  87. “Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors” In SIAM Journal on Matrix Analysis and Applications 34.2 Society for IndustrialApplied Mathematics, 2013, pp. 470–494 DOI: 10.1137/120885723
  88. “Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver” In Physical Review X 7.3 American Physical Society, 2017, pp. 031013 DOI: 10.1103/PhysRevX.7.031013
  89. “T3NS: Three-Legged Tree Tensor Network States” In Journal of Chemical Theory and Computation 14.4 American Chemical Society, 2018, pp. 2026–2033 DOI: 10.1021/acs.jctc.8b00098
  90. Natalia Chepiga and Steven R. White “Comb tensor networks” In Physical Review B 99.23 American Physical Society, 2019, pp. 235426 DOI: 10.1103/PhysRevB.99.235426
  91. Hiromi Otsuka “Density-matrix renormalization-group study of the spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG XXZ antiferromagnet on the Bethe lattice” In Physical Review B 53.21 American Physical Society, 1996, pp. 14004–14007 DOI: 10.1103/PhysRevB.53.14004
  92. Barry Friedman “A density matrix renormalization group approach to interacting quantum systems on Cayley trees” In Journal of Physics: Condensed Matter 9.42, 1997, pp. 9021 DOI: 10.1088/0953-8984/9/42/016
  93. M.-B. Lepetit, M. Cousy and G.M. Pastor “Density-matrix renormalization study of the Hubbard model [4]on a Bethe lattice” In The European Physical Journal B - Condensed Matter and Complex Systems 13.3, 2000, pp. 421–427 DOI: 10.1007/s100510050053
  94. “Quantum transverse-field Ising model on an infinite tree from matrix product states” In Physical Review B 77.21 American Physical Society, 2008, pp. 214431 DOI: 10.1103/PhysRevB.77.214431
  95. Manoranjan Kumar, S. Ramasesha and Zoltán G. Soos “Density matrix renormalization group algorithm for Bethe lattices of spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG or spin-1 sites with Heisenberg antiferromagnetic exchange” In Physical Review B 85.13 American Physical Society, 2012, pp. 134415 DOI: 10.1103/PhysRevB.85.134415
  96. Wei Li, Jan Delft and Tao Xiang “Efficient simulation of infinite tree tensor network states on the Bethe lattice” In Physical Review B 86.19 American Physical Society, 2012, pp. 195137 DOI: 10.1103/PhysRevB.86.195137
  97. Ádám Nagy “Simulating quantum systems on the Bethe lattice by translationally invariant infinite-tree tensor network” In Annals of Physics 327.2, 2012, pp. 542–552 DOI: 10.1016/j.aop.2011.11.012
  98. “Phase diagram of the isotropic spin-3232\frac{3}{2}divide start_ARG 3 end_ARG start_ARG 2 end_ARG model on the z=3𝑧3z=3italic_z = 3 Bethe lattice” In Physical Review B 88.3 American Physical Society, 2013, pp. 035138 DOI: 10.1103/PhysRevB.88.035138
  99. “Hubbard model on the Bethe lattice via variational uniform tree states: Metal-insulator transition and a Fermi liquid” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023054 DOI: 10.1103/PhysRevResearch.3.023054
  100. “Towards a polynomial algorithm for optimal contraction sequence of tensor networks from trees” In Phys. Rev. E 100 American Physical Society, 2019, pp. 043309 DOI: 10.1103/PhysRevE.100.043309
  101. Mihail Stoian “On the Optimal Linear Contraction Order for Tree Tensor Networks”, 2023 arXiv:2209.12332 [quant-ph]
  102. “Matrix product state representations” In Quantum Information & Computation 7.5, 2007, pp. 401–430
  103. Jutho Haegeman, Tobias J. Osborne and Frank Verstraete “Post-matrix product state methods: To tangent space and beyond” In Phys. Rev. B 88 American Physical Society, 2013, pp. 075133 DOI: 10.1103/PhysRevB.88.075133
  104. “Geometry of matrix product states: Metric, parallel transport, and curvature” 021902 In Journal of Mathematical Physics 55.2, 2014 DOI: 10.1063/1.4862851
  105. C. Hubig, J. Haegeman and U. Schollwöck “Error estimates for extrapolations with matrix-product states” In Physical Review B 97.4 American Physical Society, 2018, pp. 045125 DOI: 10.1103/PhysRevB.97.045125
  106. Andreas Gleis, Jheng-Wei Li and Jan Delft “Projector formalism for kept and discarded spaces of matrix product states” In Physical Review B 106.19 American Physical Society, 2022, pp. 195138 DOI: 10.1103/PhysRevB.106.195138
  107. “The geometry of algorithms using hierarchical tensors” In Linear Algebra and its Applications 439.1, 2013, pp. 133–166 DOI: 10.1016/j.laa.2013.03.016
  108. F. Verstraete, D. Porras and J.I. Cirac “Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective” In Physical Review Letters 93.22 American Physical Society, 2004, pp. 227205 DOI: 10.1103/PhysRevLett.93.227205
  109. Peter Pippan, Steven R. White and Hans Gerd Evertz “Efficient matrix-product state method for periodic boundary conditions” In Physical Review B 81.8 American Physical Society, 2010, pp. 081103 DOI: 10.1103/PhysRevB.81.081103
  110. “Tensor Ring Decomposition” arXiv:1606.05535 [cs] type: article, 2016 DOI: 10.48550/arXiv.1606.05535
  111. “On algorithms for and computing with the tensor ring decomposition” In Numerical Linear Algebra with Applications 27.3, 2020, pp. e2289 DOI: 10.1002/nla.2289
  112. “Two-Dimensional Tensor Product Variational Formulation” In Progress of Theoretical Physics 105.3, 2001, pp. 409–417 DOI: 10.1143/PTP.105.409
  113. “Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing” In Physical Review B 92.3 American Physical Society, 2015, pp. 035142 DOI: 10.1103/PhysRevB.92.035142
  114. Saeed S. Jahromi and Román Orús “Universal tensor-network algorithm for any infinite lattice” In Physical Review B 99.19 American Physical Society, 2019, pp. 195105 DOI: 10.1103/PhysRevB.99.195105
  115. Patrick C.G. Vlaar and Philippe Corboz “Simulation of three-dimensional quantum systems with projected entangled-pair states” In Physical Review B 103.20 American Physical Society, 2021, pp. 205137 DOI: 10.1103/PhysRevB.103.205137
  116. “Vertical density matrix algorithm: A higher-dimensional numerical renormalization scheme based on the tensor product state ansatz” In Physical Review E 64.1 American Physical Society, 2001, pp. 016705 DOI: 10.1103/PhysRevE.64.016705
  117. “Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions” arXiv:cond-mat/0407066 type: article, 2004 DOI: 10.48550/arXiv.cond-mat/0407066
  118. “Tensor Product Variational Formulation for Quantum Systems” arXiv:cond-mat/0401115 type: article, 2004 DOI: 10.48550/arXiv.cond-mat/0401115
  119. H.C. Jiang, Z.Y. Weng and T. Xiang “Accurate Determination of Tensor Network State of Quantum Lattice Models in Two Dimensions” In Physical Review Letters 101.9 American Physical Society, 2008, pp. 090603 DOI: 10.1103/PhysRevLett.101.090603
  120. “Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions” In Physical Review Letters 101.25 American Physical Society, 2008, pp. 250602 DOI: 10.1103/PhysRevLett.101.250602
  121. “Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction” In Physical Review B 80.9 American Physical Society, 2009, pp. 094403 DOI: 10.1103/PhysRevB.80.094403
  122. “Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states” In Physical Review B 81.16 American Physical Society, 2010, pp. 165104 DOI: 10.1103/PhysRevB.81.165104
  123. “Fate of the cluster state on the square lattice in a magnetic field” In Physical Review A 86.2 American Physical Society, 2012, pp. 022317 DOI: 10.1103/PhysRevA.86.022317
  124. “Computational Complexity of Projected Entangled Pair States” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 140506 DOI: 10.1103/PhysRevLett.98.140506
  125. Reza Haghshenas, Matthew J. O’Rourke and Garnet Kin-Lic Chan “Conversion of projected entangled pair states into a canonical form” In Physical Review B 100.5 American Physical Society, 2019, pp. 054404 DOI: 10.1103/PhysRevB.100.054404
  126. “Isometric tensor network representation of string-net liquids” In Physical Review B 101.8 American Physical Society, 2020, pp. 085117 DOI: 10.1103/PhysRevB.101.085117
  127. Michael P. Zaletel and Frank Pollmann “Isometric Tensor Network States in Two Dimensions” In Physical Review Letters 124.3 American Physical Society, 2020, pp. 037201 DOI: 10.1103/PhysRevLett.124.037201
  128. “DMRG Approach to Optimizing Two-Dimensional Tensor Networks”, 2020 arXiv:1908.08833 [cond-mat.str-el]
  129. Maurits S.J. Tepaske and David J. Luitz “Three-dimensional isometric tensor networks” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023236 DOI: 10.1103/PhysRevResearch.3.023236
  130. Sheng-Hsuan Lin, Michael P. Zaletel and Frank Pollmann “Efficient simulation of dynamics in two-dimensional quantum spin systems with isometric tensor networks” In Physical Review B 106.24 American Physical Society, 2022, pp. 245102 DOI: 10.1103/PhysRevB.106.245102
  131. “The minimal canonical form of a tensor network”, 2022 arXiv:2209.14358 [quant-ph]
  132. “Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models” In Physical Review B 86.13 American Physical Society, 2012, pp. 134429 DOI: 10.1103/PhysRevB.86.134429
  133. Michael Lubasch, J.Ignacio Cirac and Mari-Carmen Bañuls “Algorithms for finite projected entangled pair states” In Physical Review B 90.6 American Physical Society, 2014, pp. 064425 DOI: 10.1103/PhysRevB.90.064425
  134. Ho N. Phien, Ian P. McCulloch and Guifré Vidal “Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment” In Physical Review B 91.11 American Physical Society, 2015, pp. 115137 DOI: 10.1103/PhysRevB.91.115137
  135. Shuo Yang, Zheng-Cheng Gu and Xiao-Gang Wen “Loop Optimization for Tensor Network Renormalization” In Physical Review Letters 118.11 American Physical Society, 2017, pp. 110504 DOI: 10.1103/PhysRevLett.118.110504
  136. Kenji Harada “Entanglement branching operator” In Physical Review B 97.4 American Physical Society, 2018, pp. 045124 DOI: 10.1103/PhysRevB.97.045124
  137. Markus Hauru, Clement Delcamp and Sebastian Mizera “Renormalization of tensor networks using graph-independent local truncations” In Physical Review B 97.4 American Physical Society, 2018, pp. 045111 DOI: 10.1103/PhysRevB.97.045111
  138. Glen Evenbly “Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops” In Physical Review B 98.8 American Physical Society, 2018, pp. 085155 DOI: 10.1103/PhysRevB.98.085155
  139. “Graded Projected Entangled-Pair State Representations and An Algorithm for Translationally Invariant Strongly Correlated Electronic Systems on Infinite-Size Lattices in Two Spatial Dimensions” arXiv:0907.5520 [cond-mat] type: article, 2009 DOI: 10.48550/arXiv.0907.5520
  140. “Tensor Network Methods for Extracting CFT Data from Fixed-Point Tensors and Defect Coarse Graining”, 2023 arXiv:2305.09899 [cond-mat.stat-mech]
  141. Judea Pearl “Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach” In Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI’82 Pittsburgh, Pennsylvania: AAAI Press, 1982, pp. 133–136
  142. Judea Pearl “Fusion, propagation, and structuring in belief networks” In Artificial Intelligence 29.3, 1986, pp. 241–288 DOI: https://doi.org/10.1016/0004-3702(86)90072-X
  143. J.S. Yedidia, W.T. Freeman and Y. Weiss “Constructing free-energy approximations and generalized belief propagation algorithms” In IEEE Transactions on Information Theory 51.7, 2005, pp. 2282–2312 DOI: 10.1109/TIT.2005.850085
  144. Jonathan S. Yedidia, William T. Freeman and Yair Weiss “Understanding Belief Propagation and Its Generalizations” In Exploring Artificial Intelligence in the New Millennium San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 239–269
  145. “Quantum Graphical Models and Belief Propagation” In Annals of Physics 323.8, 2008, pp. 1899–1946 DOI: https://doi.org/10.1016/j.aop.2007.10.001
  146. “Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs” In Phys. Rev. A 77 American Physical Society, 2008, pp. 052318 DOI: 10.1103/PhysRevA.77.052318
  147. Andrew Wrigley, Wee Sun Lee and Nan Ye “Tensor Belief Propagation” In Proceedings of the 34th International Conference on Machine Learning 70, Proceedings of Machine Learning Research PMLR, 2017, pp. 3771–3779 URL: https://proceedings.mlr.press/v70/wrigley17a.html
  148. “Duality of graphical models and tensor networks” In Information and Inference: A Journal of the IMA 8.2, 2018, pp. 273–288 DOI: 10.1093/imaiai/iay009
  149. “Efficient tensor network simulation of quantum many-body physics on sparse graphs”, 2022 arXiv:2206.04701 [quant-ph]
  150. Chu Guo, Dario Poletti and Itai Arad “Block Belief Propagation Algorithm for 2D Tensor Networks”, 2023 arXiv:2301.05844 [quant-ph]
  151. “One-step replica symmetry breaking in the language of tensor networks” arXiv:2306.15004 [cond-mat, physics:physics, physics:quant-ph] type: article, 2023 DOI: 10.48550/arXiv.2306.15004
  152. “Tensor Network Message Passing” arXiv:2305.01874 [cond-mat, physics:physics] type: article, 2023 DOI: 10.48550/arXiv.2305.01874
  153. “Tensor networks contraction and the belief propagation algorithm” In Physical Review Research 3.2 American Physical Society, 2021, pp. 023073 DOI: 10.1103/PhysRevResearch.3.023073
  154. Jonathan S Yedidia, William Freeman and Yair Weiss “Generalized Belief Propagation” In Advances in Neural Information Processing Systems 13 MIT Press, 2000 URL: https://proceedings.neurips.cc/paper_files/paper/2000/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
  155. Michael Lubasch, J.Ignacio Cirac and Mari-Carmen Bañuls “Unifying projected entangled pair state contractions” In New Journal of Physics 16.3 IOP Publishing, 2014, pp. 033014 DOI: 10.1088/1367-2630/16/3/033014
  156. “Corner Transfer Matrix Renormalization Group Method” In Journal of the Physical Society of Japan 65.4 The Physical Society of Japan, 1996, pp. 891–894 DOI: 10.1143/JPSJ.65.891
  157. Román Orús “Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems” In Physical Review B 85.20 American Physical Society, 2012, pp. 205117 DOI: 10.1103/PhysRevB.85.205117
  158. Philippe Corboz, T.M. Rice and Matthias Troyer “Competing States in the t𝑡titalic_t-J𝐽Jitalic_J Model: Uniform d𝑑ditalic_d-Wave State versus Stripe State” In Physical Review Letters 113.4 American Physical Society, 2014, pp. 046402 DOI: 10.1103/PhysRevLett.113.046402
  159. “Faster methods for contracting infinite two-dimensional tensor networks” In Physical Review B 98.23 American Physical Society, 2018, pp. 235148 DOI: 10.1103/PhysRevB.98.235148
  160. George T. Cantwell and M.E.J. Newman “Message passing on networks with loops” In Proceedings of the National Academy of Sciences 116.47, 2019, pp. 23398–23403 DOI: 10.1073/pnas.1914893116
  161. Alec Kirkley, George T. Cantwell and M.E.J. Newman “Belief propagation for networks with loops” In Science Advances 7.17, 2021, pp. eabf1211 DOI: 10.1126/sciadv.abf1211
  162. “Large deviations in stochastic dynamics over graphs through Matrix Product Belief Propagation”, 2023 arXiv:2303.17403 [cond-mat.stat-mech]
  163. Michael Levin and Cody P. Nave “Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models” In Phys. Rev. Lett. 99 American Physical Society, 2007, pp. 120601 DOI: 10.1103/PhysRevLett.99.120601
  164. “Tensor Network Renormalization” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 180405 DOI: 10.1103/PhysRevLett.115.180405
  165. Shuo Yang, Zheng-Cheng Gu and Xiao-Gang Wen “Loop Optimization for Tensor Network Renormalization” In Phys. Rev. Lett. 118 American Physical Society, 2017, pp. 110504 DOI: 10.1103/PhysRevLett.118.110504
  166. “Contracting Arbitrary Tensor Networks: General Approximate Algorithm and Applications in Graphical Models and Quantum Circuit Simulations” In Phys. Rev. Lett. 125 American Physical Society, 2020, pp. 060503 DOI: 10.1103/PhysRevLett.125.060503
  167. Christopher T. Chubb “General tensor network decoding of 2D Pauli codes”, 2021 arXiv:2101.04125 [quant-ph]
  168. Cupjin Huang, Michael Newman and Mario Szegedy “Explicit Lower Bounds on Strong Quantum Simulation” In IEEE Transactions on Information Theory 66.9, 2020, pp. 5585–5600 DOI: 10.1109/TIT.2020.3004427
  169. The authors would like to thank Johnnie Gray for pointing this out to us during the preparation of this work.
  170. “ITensorNetworks.jl”, https://github.com/mtfishman/ITensorNetworks.jl, 2023
  171. A.I.V. Casado, M. Griot and R.D. Wesel “Informed Dynamic Scheduling for Belief-Propagation Decoding of LDPC Codes” In 2007 IEEE International Conference on Communications, 2007, pp. 932–937 DOI: 10.1109/ICC.2007.158
  172. “Serial Schedules for Belief-Propagation: Analysis of Convergence Time” In IEEE Transactions on Information Theory 54.3, 2008, pp. 1316–1319 DOI: 10.1109/TIT.2007.915702
  173. “Finding Exponential Product Formulas of Higher Orders” In Quantum Annealing and Other Optimization Methods Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 37–68 DOI: 10.1007/11526216_2
  174. “Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States” In Physical Review Letters 96.22 American Physical Society, 2006, pp. 220601 DOI: 10.1103/PhysRevLett.96.220601
  175. Tappen and Freeman “Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters” In Proceedings Ninth IEEE International Conference on Computer Vision, 2003, pp. 900–906 vol.2 DOI: 10.1109/ICCV.2003.1238444
  176. M.J. Wainwright, T.S. Jaakkola and A.S. Willsky “Tree-based reparameterization framework for analysis of sum-product and related algorithms” In IEEE Transactions on Information Theory 49.5, 2003, pp. 1120–1146 DOI: 10.1109/TIT.2003.810642
  177. Gal Elidan, Ian McGraw and Daphne Koller “Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing” In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, UAI’06 Cambridge, MA, USA: AUAI Press, 2006, pp. 165–173
  178. C.St.J.A. Nash-Williams “Decomposition of Finite Graphs Into Forests” In Journal of the London Mathematical Society s1-39.1, 1964, pp. 12–12 DOI: 10.1112/jlms/s1-39.1.12
  179. Saeed S. Jahromi and Román Orús “Thermal bosons in 3d optical lattices via tensor networks” In Scientific Reports 10.1 Nature Publishing Group, 2020, pp. 19051 DOI: 10.1038/s41598-020-75548-x
  180. Saeed S. Jahromi, Hadi Yarloo and Román Orús “Thermodynamics of three-dimensional Kitaev quantum spin liquids via tensor networks” In Physical Review Research 3.3 American Physical Society, 2021, pp. 033205 DOI: 10.1103/PhysRevResearch.3.033205
  181. “Thermal Ising Transition in the Spin-1/2121/21 / 2 J1subscript𝐽1{J}_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-J2subscript𝐽2{J}_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Heisenberg Model” In Phys. Rev. Lett. 128 American Physical Society, 2022, pp. 227202 DOI: 10.1103/PhysRevLett.128.227202
  182. V. Murg, F. Verstraete and J.I. Cirac “Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states” In Physical Review A 75.3 American Physical Society, 2007, pp. 033605 DOI: 10.1103/PhysRevA.75.033605
  183. Philippe Corboz “Variational optimization with infinite projected entangled-pair states” In Physical Review B 94.3 American Physical Society, 2016, pp. 035133 DOI: 10.1103/PhysRevB.94.035133
  184. “Gradient methods for variational optimization of projected entangled-pair states” In Physical Review B 94.15 American Physical Society, 2016, pp. 155123 DOI: 10.1103/PhysRevB.94.155123
  185. “Differentiable Programming Tensor Networks” In Physical Review X 9.3 American Physical Society, 2019, pp. 031041 DOI: 10.1103/PhysRevX.9.031041
  186. Markus Scheb and Reinhard M. Noack “Finite Projected Entangled Pair States for the Hubbard model” arXiv:2302.04192 [cond-mat] In Physical Review B 107.16, 2023, pp. 165112 DOI: 10.1103/PhysRevB.107.165112
  187. Jacek Dziarmaga “Time evolution of an infinite projected entangled pair state: Neighborhood tensor update” In Physical Review B 104.9 American Physical Society, 2021, pp. 094411 DOI: 10.1103/PhysRevB.104.094411
  188. “Evidence for the utility of quantum computing before fault tolerance” In Nature 618.7965, 2023, pp. 500–505 DOI: 10.1038/s41586-023-06096-3
  189. Tomislav Begušić, Johnnie Gray and Garnet Kin-Lic Chan “Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance”, 2023 arXiv:2308.05077 [quant-ph]
  190. “Density Matrix Renormalization Group with Tensor Processing Units” arXiv:2204.05693 [cond-mat, physics:quant-ph] type: article, 2022 DOI: 10.48550/arXiv.2204.05693
  191. “Julia: A fresh approach to numerical computing” In SIAM review 59.1 SIAM, 2017, pp. 65–98 DOI: https://doi.org/10.1137/141000671
  192. Matthew Fishman, Steven R. White and E.Miles Stoudenmire “Codebase release 0.3 for ITensor” In SciPost Phys. Codebases SciPost, 2022, pp. 4–r0.3 DOI: 10.21468/SciPostPhysCodeb.4-r0.3
  193. “GraphTikz.jl”, https://github.com/mtfishman/GraphTikZ.jl, 2023
  194. Ling Wang, Iztok Pižorn and Frank Verstraete “Monte Carlo simulation with tensor network states” In Physical Review B 83.13 American Physical Society, 2011, pp. 134421 DOI: 10.1103/PhysRevB.83.134421
Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: