Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear tracking MPC for nonlinear systems Part II: The data-driven case (2105.08567v4)

Published 18 May 2021 in math.OC, cs.SY, and eess.SY

Abstract: We present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parametrization provided by the Fundamental Lemma of Willems et al. We use new input-output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the Fundamental Lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor.

Citations (108)

Summary

We haven't generated a summary for this paper yet.