Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Tracking MPC for Changing Setpoints (1910.09443v3)

Published 21 Oct 2019 in eess.SY and cs.SY

Abstract: We propose a data-driven tracking model predictive control (MPC) scheme to control unknown discrete-time linear time-invariant systems. The scheme uses a purely data-driven system parametrization to predict future trajectories based on behavioral systems theory. The control objective is tracking of a given input-output setpoint. We prove that this setpoint is exponentially stable for the closed loop of the proposed MPC, if it is reachable by the system dynamics and constraints. For an unreachable setpoint, our scheme guarantees closed-loop exponential stability of the optimal reachable equilibrium. Moreover, in case the system dynamics are known, the presented results extend the existing results for model-based setpoint tracking to the case where the stage cost is only positive semidefinite in the state. The effectiveness of the proposed approach is illustrated by means of a practical example.

Citations (40)

Summary

We haven't generated a summary for this paper yet.