Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-interacting dark matter implied by nano-Hertz gravitational waves (2306.16966v3)

Published 29 Jun 2023 in hep-ph and astro-ph.CO

Abstract: The self-interacting dark matter (SIDM) paradigm offers a potential solution to the small-scale structure problems faced by collision-less cold dark matter. This framework incorporates self-interactions among dark matter particles, typically mediated by a particle with a MeV-scale mass. Recent evidences of nano-Hertz gravitational waves from pulsar timing arrays (PTAs) such as NANOGrav, CPTA, EPTA, and PPTA suggest the occurrence of a first-order phase transition (FOPT) at a MeV-scale temperature. Considering the close proximity between these two scales, we propose that the mediator mass in the SIDM model originates from the spontaneous breaking of a $U(1)'$ symmetry, which is driven by the FOPT indicated by PTA data. Consequently, the alignment of these two scales is believed to be deeply connected by the same underlying physics. By extensively exploring the parameter space, remarkably, we find that the parameter space favored by SIDM just provides an explanation for the PTA data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. B. Moore, Nature 370, 629 (1994).
  2. R. A. Flores and J. R. Primack, Astrophys. J. Lett. 427, L1 (1994), arXiv:astro-ph/9402004 .
  3. K. A. Oman et al., Mon. Not. Roy. Astron. Soc. 452, 3650 (2015), arXiv:1504.01437 [astro-ph.GA] .
  4. G. Agazie et al. (NANOGrav),   (2023), 10.3847/2041-8213/acdac6, arXiv:2306.16213 [astro-ph.HE] .
  5. H. Xu et al.,   (2023), 10.1088/1674-4527/acdfa5, arXiv:2306.16216 [astro-ph.HE] .
  6. J. Antoniadis et al.,   (2023), arXiv:2306.16214 [astro-ph.HE] .
  7. D. J. Reardon et al.,  (2023), 10.3847/2041-8213/acdd02, arXiv:2306.16215 [astro-ph.HE] .
  8. A. Afzal et al. (NANOGrav),   (2023), 10.3847/2041-8213/acdc91, arXiv:2306.16219 [astro-ph.HE] .
  9. J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO] .
  10. V. Vaskonen and H. Veermäe, Phys. Rev. Lett. 126, 051303 (2021), arXiv:2009.07832 [astro-ph.CO] .
  11. G. Domènech and S. Pi, Sci. China Phys. Mech. Astron. 65, 230411 (2022), arXiv:2010.03976 [astro-ph.CO] .
  12. K. Kohri and T. Terada, Phys. Lett. B 813, 136040 (2021), arXiv:2009.11853 [astro-ph.CO] .
  13. W. Ratzinger and P. Schwaller, SciPost Phys. 10, 047 (2021), arXiv:2009.11875 [astro-ph.CO] .
  14. K. Freese and M. W. Winkler, Phys. Rev. D 106, 103523 (2022), arXiv:2208.03330 [astro-ph.CO] .
  15. C. S. Kochanek and M. J. White, Astrophys. J. 543, 514 (2000), arXiv:astro-ph/0003483 .
  16. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  17. D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000), arXiv:astro-ph/9909386 .
  18. A. Burkert, Astrophys. J. Lett. 534, L143 (2000), arXiv:astro-ph/0002409 .
  19. Z. Kang, Phys. Lett. B 751, 201 (2015), arXiv:1505.06554 [hep-ph] .
  20. P. Ko and Y. Tang, Phys. Lett. B 739, 62 (2014a), arXiv:1404.0236 [hep-ph] .
  21. P. Ko and Y. Tang, JCAP 05, 047 (2014b), arXiv:1402.6449 [hep-ph] .
  22. K. Schutz and T. R. Slatyer, JCAP 01, 021 (2015), arXiv:1409.2867 [hep-ph] .
  23. D. Yang and H.-B. Yu, JCAP 09, 077 (2022), arXiv:2205.03392 [astro-ph.CO] .
  24. M. R. Buckley and P. J. Fox, Phys. Rev. D 81, 083522 (2010), arXiv:0911.3898 [hep-ph] .
  25. A. Sommerfeld, Annalen Phys. 403, 257 (1931).
  26. M. T. Frandsen and S. Sarkar, Phys. Rev. Lett. 105, 011301 (2010), arXiv:1003.4505 [hep-ph] .
  27. J. Heeck and A. Thapa, Eur. Phys. J. C 82, 480 (2022), arXiv:2202.08854 [hep-ph] .
  28. A. D. Linde, Nucl. Phys. B 216, 421 (1983), [Erratum: Nucl.Phys.B 223, 544 (1983)].
  29. C. Caprini et al., JCAP 04, 001 (2016), arXiv:1512.06239 [astro-ph.CO] .
  30. C. L. Wainwright, Comput. Phys. Commun. 183, 2006 (2012), arXiv:1109.4189 [hep-ph] .
  31. Y. Bai and M. Korwar, Phys. Rev. D 105, 095015 (2022), arXiv:2109.14765 [hep-ph] .
  32. S. Deng and L. Bian,   (2023), arXiv:2304.06576 [hep-ph] .
  33. J. Liu,   (2023), arXiv:2305.15100 [astro-ph.CO] .
  34. A. M. Sirunyan et al. (CMS), Phys. Lett. B 793, 520 (2019), arXiv:1809.05937 [hep-ex] .
  35. F. Rossi-Torres and C. A. Moura, Phys. Rev. D 92, 115022 (2015), arXiv:1503.06475 [hep-ph] .
  36. J. Yang et al. (PandaX-II), Sci. China Phys. Mech. Astron. 64, 111062 (2021), arXiv:2104.14724 [hep-ex] .
  37. J. Koda and P. R. Shapiro, Mon. Not. Roy. Astron. Soc. 415, 1125 (2011), arXiv:1101.3097 [astro-ph.CO] .
  38. S. Balberg and S. L. Shapiro, Phys. Rev. Lett. 88, 101301 (2002), arXiv:astro-ph/0111176 .
Citations (48)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.