Semiconvexity estimates for nonlinear integro-differential equations (2306.16751v2)
Abstract: In this paper we establish for the first time local semiconvexity estimates for fully nonlinear equations and for obstacle problems driven by integro-differential operators with general kernels. Our proof is based on the Bernstein technique, which we develop for a natural class of nonlocal operators and consider to be of independent interest. In particular, we solve an open problem from Cabr\'e-Dipierro-Valdinoci [CDV22]. As an application of our result, we establish optimal regularity estimates and smoothness of the free boundary near regular points for the nonlocal obstacle problem on domains. Finally, we also extend the Bernstein technique to parabolic equations and nonsymmetric operators.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.