Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Deep Convolutional Neural Network Model For Yoga Pose Recognition Using Single Images

Published 27 Jun 2023 in cs.CV | (2306.15768v1)

Abstract: Pose recognition deals with designing algorithms to locate human body joints in a 2D/3D space and run inference on the estimated joint locations for predicting the poses. Yoga poses consist of some very complex postures. It imposes various challenges on the computer vision algorithms like occlusion, inter-class similarity, intra-class variability, viewpoint complexity, etc. This paper presents YPose, an efficient deep convolutional neural network (CNN) model to recognize yoga asanas from RGB images. The proposed model consists of four steps as follows: (a) first, the region of interest (ROI) is segmented using segmentation based approaches to extract the ROI from the original images; (b) second, these refined images are passed to a CNN architecture based on the backbone of EfficientNets for feature extraction; (c) third, dense refinement blocks, adapted from the architecture of densely connected networks are added to learn more diversified features; and (d) fourth, global average pooling and fully connected layers are applied for the classification of the multi-level hierarchy of the yoga poses. The proposed model has been tested on the Yoga-82 dataset. It is a publicly available benchmark dataset for yoga pose recognition. Experimental results show that the proposed model achieves the state-of-the-art on this dataset. The proposed model obtained an accuracy of 93.28%, which is an improvement over the earlier state-of-the-art (79.35%) with a margin of approximately 13.9%. The code will be made publicly available.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.