Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical certification of nonclassical network correlations (2306.15717v4)

Published 27 Jun 2023 in quant-ph

Abstract: With the increased availability of quantum technological devices, it becomes more important to have tools to guarantee their correct nonclassical behavior. This is especially important for quantum networks, which constitute the platforms where multipartite cryptographic protocols will be implemented, and where guarantees of nonclassicality translate into security proofs. We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them. We do so, first, without assuming that nature is ultimately governed by quantum mechanics, providing a hierarchy interpolating between network nonlocality and full network nonlocality. Second we insert this assumption, which leads to results more amenable to certification in experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. John S. Bell. “On the Einstein Podolsky Rosen paradox”. Physics Physique Fizika 1, 195–200 (1964).
  2. “Can quantum-mechanical description of physical reality be considered complete?”. Phys. Rev. 47, 777–780 (1935).
  3. Nicolas Gisin. “Bell’s inequality holds for all non-product states”. Phys. Lett. A 154, 201–202 (1991).
  4. “Quantum cryptography with imperfect apparatus”. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280). Pages 503–509. IEEE (1998). arXiv:quant-ph/9809039.
  5. “Bell nonlocality”. Rev. Mod. Phys. 86, 419–478 (2014). arXiv:1303.2849.
  6. Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. Phys. Rev. Lett. 67, 661–663 (1991).
  7. “Device-independent security of quantum cryptography against collective attacks”. Phys. Rev. Lett. 98, 230501 (2007). arXiv:quant-ph/0702152.
  8. “Random numbers certified by Bell’s theorem”. Nature 464, 1021–1024 (2010). arXiv:0911.3427.
  9. George Svetlichny. “Distinguishing three-body from two-body nonseparability by a Bell-type inequality”. Phys. Rev. D 35, 3066–3069 (1987).
  10. “Operational framework for nonlocality”. Phys. Rev. Lett. 109, 070401 (2012). arXiv:1112.2647.
  11. “Definitions of multipartite nonlocality”. Phys. Rev. A 88, 014102 (2013). arXiv:1112.2626.
  12. “Entanglement percolation in quantum networks”. Nat. Phys. 3, 256–259 (2007). arXiv:quant-ph/0612167.
  13. H. Jeff Kimble. “The quantum internet”. Nature 453, 1023–1030 (2008). arXiv:0806.4195.
  14. “Quantum repeaters based on atomic ensembles and linear optics”. Rev. Mod. Phys. 83, 33–80 (2011). arXiv:0906.2699.
  15. “Quantum internet: A vision for the road ahead”. Science 362, 6412 (2018).
  16. “Quantum theory based on real numbers can be experimentally falsified”. Nature 600, 625–629 (2021). arXiv:2101.10873.
  17. Sandu Popescu. “Bell’s inequalities and density matrices: Revealing “hidden” nonlocality”. Phys. Rev. Lett. 74, 2619–2622 (1995). arXiv:quant-ph/9502005.
  18. “Characterizing the nonlocal correlations created via entanglement swapping”. Phys. Rev. Lett. 104, 170401 (2010). arXiv:0911.1314.
  19. Tobias Fritz. “Beyond Bell’s theorem: correlation scenarios”. New J. Phys. 14, 103001 (2012). arXiv:1206.5115.
  20. “Information-theoretic implications of quantum causal structures”. Nat. Commun. 6, 5766 (2015). arXiv:1407.3800.
  21. “Quantum common causes and quantum causal models”. Phys. Rev. X 7, 031021 (2017). arXiv:1609.09487.
  22. “Semidefinite tests for quantum network topologies”. Phys. Rev. Lett. 125, 110505 (2020). arXiv:2002.05801.
  23. “Bell nonlocality in networks”. Rep. Prog. Phys. 85, 056001 (2022). arXiv:2104.10700.
  24. “Single-photon nonlocality in quantum networks”. Phys. Rev. Res. 4, L012041 (2022). arXiv:2108.01726.
  25. “Bilocal versus nonbilocal correlations in entanglement-swapping experiments”. Phys. Rev. A 85, 032119 (2012). arXiv:1112.4502.
  26. “Nonlocal correlations in the star-network configuration”. Phys. Rev. A 90, 062109 (2014). arXiv:1409.5702.
  27. “Classical simulation of entanglement swapping with bounded communication”. Phys. Rev. Lett. 109, 100401 (2012). arXiv:1203.0445.
  28. Rafael Chaves. “Polynomial Bell inequalities”. Phys. Rev. Lett. 116, 010402 (2016). arXiv:1506.04325.
  29. “Nonlinear Bell inequalities tailored for quantum networks”. Phys. Rev. Lett. 116, 010403 (2016). arXiv:1506.07380.
  30. “All entangled pure quantum states violate the bilocality inequality”. Phys. Rev. A 96, 020304 (2017). arXiv:1702.00333.
  31. Ming-Xing Luo. “Computationally efficient nonlinear Bell inequalities for quantum networks”. Phys. Rev. Lett. 120, 140402 (2018). arXiv:1707.09517.
  32. “Bilocal Bell inequalities violated by the quantum Elegant Joint Measurement”. Phys. Rev. Lett. 126, 220401 (2021). arXiv:2006.16694.
  33. “Bounding the sets of classical and quantum correlations in networks”. Phys. Rev. Lett. 123, 140503 (2019). arXiv:1904.08943.
  34. “Genuine network quantum nonlocality and self-testing”. Phys. Rev. A 105, 022206 (2022). arXiv:2105.12341.
  35. “Full network nonlocality”. Phys. Rev. Lett. 128, 010403 (2022). arXiv:2105.09325.
  36. “Experimental demonstration of full network nonlocality in the bilocal scenario” (2022). arXiv:2201.06361.
  37. “Entanglement swapping and quantum correlations via symmetric joint measurements”. Phys. Rev. Lett. 129, 030502 (2022). arXiv:2203.16207.
  38. “Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics”. Nat. Commun. 14, 2153 (2023). arXiv:2212.09765.
  39. “Experimental full network nonlocality with independent sources and strict locality constraints”. Phys. Rev. Lett. 130, 190201 (2023). arXiv:2302.02472.
  40. “Constraints on nonlocality in networks from no-signaling and independence”. Nat. Commun. 11, 2378 (2020).
  41. “Proposed experiment to test local hidden-variable theories”. Phys. Rev. Lett. 23, 880–884 (1969).
  42. “Experimental demonstration of nonbilocal quantum correlations”. Sci. Adv. 3, e1602743 (2017). arXiv:1610.08514.
  43. “Entanglement swapping for generalized nonlocal correlations”. Phys. Rev. A 73, 012101 (2006). arXiv:quant-ph/0508120.
  44. “Self-testing of physical theories, or, is quantum theory optimal with respect to some information-processing task?”. Phys. Rev. Lett. 125, 060406 (2020). arXiv:2003.00349.
  45. N. David Mermin. “Extreme quantum entanglement in a superposition of macroscopically distinct states”. Phys. Rev. Lett. 65, 1838–1840 (1990).
  46. “Bell-type inequalities to detect true n𝑛nitalic_n-body nonseparability”. Phys. Rev. Lett. 88, 170405 (2002). arXiv:quant-ph/0201058.
  47. “Bell’s theorem, quantum theory, and conceptions of the universe”. Chapter 10: Going Beyond Bell’s Theorem, pages 69–72. Springer Dordrecht. Kluwer, Dordrecht (1989).
  48. “Do all pure entangled states violate Bell’s inequalities for correlation functions?”. Phys. Rev. Lett. 88, 210402 (2002). arXiv:quant-ph/0110095.
  49. “Anonymous quantum conference key agreement”. PRX Quantum 1, 020325 (2020). arXiv:2010.04534.
  50. “Universal limitations on quantum key distribution over a network”. Phys. Rev. X 11, 041016 (2021). arXiv:1912.03646.
  51. “Conference key agreement in a quantum network”. npj Quantum Inf. 9, 82 (2023).
  52. “Device-independent secret sharing and a stronger form of Bell nonlocality”. Phys. Rev. A 101, 052339 (2020). arXiv:1909.11785.
  53. Ming-Xing Luo. “Fully device-independent model on quantum networks”. Phys. Rev. Res. 4, 013203 (2022). arXiv:2106.15840.
  54. “Towards device-independent information processing on general quantum networks”. Phys. Rev. Lett. 120, 020504 (2018). arXiv:1706.07090.
  55. “Quantum inflation: A general approach to quantum causal compatibility”. Phys. Rev. X 11, 021043 (2021). arXiv:1909.10519.
  56. “Genuine quantum nonlocality in the triangle network”. Phys. Rev. Lett. 123, 140401 (2019). arXiv:1905.04902.
  57. “Towards a minimal example of quantum nonlocality without inputs”. Phys. Rev. A 107, 062413 (2023). arXiv:2207.08532.
  58. “Post-quantum nonlocality in the minimal triangle scenario”. New J. Phys. 25, 113037 (2023). arXiv:2305.03745.
  59. “Inflation: a Python library for classical and quantum causal compatibility”. Quantum 7, 996 (2023). arXiv:2211.04483.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.