Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reliability and operation cost of underdamped memories during cyclic erasures (2306.15573v2)

Published 27 Jun 2023 in cond-mat.stat-mech

Abstract: The reliability of fast repeated erasures is studied experimentally and theoretically in a 1-bit underdamped memory. The bit is encoded by the position of a micro-mechanical oscillator whose motion is confined in a double well potential. To contain the energetic cost of fast erasures, we use a resonator with high quality factor $Q$: the erasure work $W$ is close to Landauer's bound, even at high speed. The drawback is the rise of the system's temperature $T$ due to a weak coupling to the environment. Repeated erasures without letting the memory thermalize between operations result in a continuous warming, potentially leading to a thermal noise overcoming the barrier between the potential wells. In such case, the reset operation can fail to reach the targeted logical state. The reliability is characterized by the success rate $Rs_i$ after $i$ successive operations. $W$, $T$ and $Rs_i$ are studied experimentally as a function of the erasure speed. Above a velocity threshold, $T$ soars while $Rs_i$ collapses: the reliability of too fast erasures is low. These experimental results are fully justified by two complementary models. We demonstrate that $Q\simeq 10$ is optimal to contain energetic costs and maintain high reliability standards for repeated erasures at any speed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube