Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quadtree features for machine learning on CMDs (2306.15487v1)

Published 27 Jun 2023 in astro-ph.IM, astro-ph.GA, and astro-ph.SR

Abstract: The upcoming facilities like the Vera C. Rubin Observatory will provide extremely deep photometry of thousands of star clusters to the edge of the Galaxy and beyond, which will require adequate tools for automatic analysis, capable of performing tasks such as the characterization of a star cluster through the analysis of color-magnitude diagrams (CMDs). The latter are essentially point clouds in N-dimensional space, with the number of dimensions corresponding to the photometric bands employed. In this context, machine learning techniques suitable for tabular data are not immediately applicable to CMDs because the number of stars included in a given CMD is variable, and equivariance for permutations is required. To address this issue without introducing ad-hoc manipulations that would require human oversight, here we present a new CMD featurization procedure that summarizes a CMD by means of a quadtree-like structure through iterative partitions of the color-magnitude plane, extracting a fixed number of meaningful features of the relevant subregion from any given CMD. The present approach is robust to photometric noise and contamination and it shows that a simple linear regression on our features predicts distance modulus (metallicity) with a scatter of 0.33 dex (0.16 dex) in cross-validation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.