2000 character limit reached
Einstein-Proca theory from the Einstein-Cartan formulation
Published 26 Jun 2023 in hep-th, astro-ph.CO, gr-qc, and hep-ph | (2306.14953v2)
Abstract: We construct a theory of gravity in which a propagating massive vector field arises from a quadratic curvature invariant. The Einstein-Cartan formulation and a partial suppression of torsion ensure the absence of ghost and strong-coupling problems, as we prove with nonlinear Lagrangian and Hamiltonian analysis. Augmenting General Relativity with a propagating torsion vector, our theory provides a purely gravitational origin of Einstein-Proca models and constrains their parameter space. As an outlook to phenomenology, we discuss the gravitational production of fermionic dark matter.
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helv. Phys. Acta 6, 110–127 (1933).
- Jonathan L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48, 495–545 (2010), arXiv:1003.0904 [astro-ph.CO] .
- P. J. E. Peebles, “Dark Matter,” Proc. Nat. Acad. Sci. 112, 2246 (2015), arXiv:1305.6859 [astro-ph.CO] .
- Gianfranco Bertone and Dan Hooper, “History of dark matter,” Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
- A. Arbey and F. Mahmoudi, “Dark matter and the early Universe: a review,” Prog. Part. Nucl. Phys. 119, 103865 (2021), arXiv:2104.11488 [hep-ph] .
- Alexei A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. B 91, 99–102 (1980).
- Alan H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23, 347–356 (1981).
- Andrei D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. B 108, 389–393 (1982).
- Viatcheslav F. Mukhanov and G. V. Chibisov, “Quantum Fluctuations and a Nonsingular Universe,” JETP Lett. 33, 532–535 (1981).
- Adam G. Riess et al. (Supernova Search Team), “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), arXiv:astro-ph/9805201 .
- S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565–586 (1999), arXiv:astro-ph/9812133 .
- Y. Akrami et al. (Planck), “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- P. A. R. Ade et al. (BICEP, Keck), “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127, 151301 (2021), arXiv:2110.00483 [astro-ph.CO] .
- A Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsber. Preuss. Akad. Wiss 18, 844 (1915).
- H. Weyl, “Gravitation and electricity,” Sitzungsber. Preuss. Akad. Wiss. 26, 465 (1918).
- Attilio Palatini, “Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton,” Rendiconti del Circolo Matematico di Palermo 43, 203–212 (1919).
- H. Weyl, Space-Time-Matter (Dover Publications, 1922).
- Élie Cartan, “Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion,” Comptes Rendus, Ac. Sc. Paris 174, 593–595 (1922).
- Arthur Stanley Eddington, The Mathematical Theory of Relativity (Cambridge University Press, 1923).
- Élie Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie),” in Annales scientifiques de l’École normale supérieure, Vol. 40 (1923) pp. 325–412.
- Élie Cartan, “Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie)(suite),” in Annales scientifiques de l’École Normale Supérieure, Vol. 41 (1924) pp. 1–25.
- Élie Cartan, “Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie),” in Annales scientifiques de l’École normale supérieure, Vol. 42 (1925) pp. 17–88.
- A Einstein, ‘‘Einheitliche Feldtheorie von Gravitation und Elektrizität,” Sitzungsber. Preuss. Akad. Wiss 22, 414 (1925).
- Albert Einstein, “Riemanngeometrie mit Aufrechterhaltung des Begriffes des Fern-Parallelismus,” Sitzungsber. Preuss. Akad. Wiss 17, 217 (1928a).
- Albert Einstein, “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität,” Sitzungsber. Preuss. Akad. Wiss 18, 224 (1928b).
- Erwin Schrödinger, Space-Time Structure (Cambridge University Press, 1950).
- C. Møller, “Conservation Law and Absolute Parallelism in General Relativity,” K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1, 1 (1961).
- C. Pellegrini and J. Plebanski, “Tetrad Fields and Gravitational Fields,” K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 2, 1 (1963).
- K. Hayashi and T. Nakano, “Extended translation invariance and associated gauge fields,” Prog. Theor. Phys. 38, 491–507 (1967).
- Y. M. Cho, “Einstein Lagrangian as the Translational Yang-Mills Lagrangian,” Phys. Rev. D 14, 2521 (1976).
- F. W. Hehl, G. D. Kerlick, and P. Von Der Heyde, “On Hypermomentum in General Relativity. 2. The Geometry of Space-Time,” Z. Naturforsch. A 31, 524–527 (1976a).
- F. W. Hehl, G. D. Kerlick, and P. Von Der Heyde, “On Hypermomentum in General Relativity. 3. Coupling Hypermomentum to Geometry,” Z. Naturforsch. A 31, 823–827 (1976b).
- F. W. Hehl, G. D. Kerlick, and P. Von Der Heyde, “On a New Metric Affine Theory of Gravitation,” Phys. Lett. B 63, 446–448 (1976c).
- F. W. Hehl, G. D. Kerlick, E. A. Lord, and L. L Smalley, “Hypermomentum and the Microscopic Violation of the Riemannian Constraint in General Relativity,” Phys. Lett. B 70, 70–72 (1977).
- Jerzy Kijowski, “On a new variational principle in general relativity and the energy of the gravitational field,” General Relativity and Gravitation 9, 857–877 (1978).
- Kenji Hayashi and Takeshi Shirafuji, “New General Relativity,” Phys. Rev. D 19, 3524–3553 (1979), [Addendum: Phys.Rev.D 24, 3312–3314 (1982)].
- James M. Nester and Hwei-Jang Yo, “Symmetric teleparallel general relativity,” Chin. J. Phys. 37, 113 (1999), arXiv:gr-qc/9809049 .
- Jose Beltrán Jiménez, Lavinia Heisenberg, Damianos Iosifidis, Alejandro Jiménez-Cano, and Tomi S. Koivisto, “General teleparallel quadratic gravity,” Phys. Lett. B 805, 135422 (2020a), arXiv:1909.09045 [gr-qc] .
- Lavinia Heisenberg, “A systematic approach to generalisations of General Relativity and their cosmological implications,” Phys. Rept. 796, 1–113 (2019), arXiv:1807.01725 [gr-qc] .
- Jose Beltrán Jiménez, Lavinia Heisenberg, and Tomi S. Koivisto, “The Geometrical Trinity of Gravity,” Universe 5, 173 (2019), arXiv:1903.06830 [hep-th] .
- Claire Rigouzzo and Sebastian Zell, “Coupling metric-affine gravity to a Higgs-like scalar field,” Phys. Rev. D 106, 024015 (2022), arXiv:2204.03003 [hep-th] .
- Lavinia Heisenberg, “Review on f(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) Gravity,” (2023), arXiv:2309.15958 [gr-qc] .
- Ryoyu Utiyama, “Invariant theoretical interpretation of interaction,” Phys. Rev. 101, 1597–1607 (1956).
- T. W. B. Kibble, “Lorentz invariance and the gravitational field,” J. Math. Phys. 2, 212–221 (1961).
- Dennis W Sciama, “On the analogy between charge and spin in general relativity,” in Recent developments in general relativity (Pergamon Press, Oxford, 1962) p. 415.
- Laurent Freidel, Djordje Minic, and Tatsu Takeuchi, “Quantum gravity, torsion, parity violation and all that,” Phys. Rev. D 72, 104002 (2005), arXiv:hep-th/0507253 .
- Florian Bauer and Durmus A. Demir, “Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations,” Phys. Lett. B 665, 222–226 (2008), arXiv:0803.2664 [hep-ph] .
- Nikodem J. Poplawski, “Matter-antimatter asymmetry and dark matter from torsion,” Phys. Rev. D 83, 084033 (2011), arXiv:1101.4012 [gr-qc] .
- Dmitri Diakonov, Alexander G. Tumanov, and Alexey A. Vladimirov, “Low-energy General Relativity with torsion: A Systematic derivative expansion,” Phys. Rev. D 84, 124042 (2011), arXiv:1104.2432 [hep-th] .
- I. B. Khriplovich, “Gravitational four-fermion interaction on the Planck scale,” Phys. Lett. B 709, 111–113 (2012), arXiv:1201.4226 [gr-qc] .
- João Magueijo, T. G. Zlosnik, and T. W. B. Kibble, “Cosmology with a spin,” Phys. Rev. D 87, 063504 (2013), arXiv:1212.0585 [astro-ph.CO] .
- I. B. Khriplovich and A. S. Rudenko, “Gravitational four-fermion interaction and dynamics of the early Universe,” JHEP 11, 174 (2013), arXiv:1303.1348 [astro-ph.CO] .
- Tommi Markkanen, Tommi Tenkanen, Ville Vaskonen, and Hardi Veermäe, “Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini,” JCAP 03, 029 (2018), arXiv:1712.04874 [gr-qc] .
- Pedro Carrilho, David Mulryne, John Ronayne, and Tommi Tenkanen, “Attractor Behaviour in Multifield Inflation,” JCAP 06, 032 (2018), arXiv:1804.10489 [astro-ph.CO] .
- Syksy Rasanen and Eemeli Tomberg, “Planck scale black hole dark matter from Higgs inflation,” JCAP 01, 038 (2019), arXiv:1810.12608 [astro-ph.CO] .
- Javier Rubio and Eemeli S. Tomberg, “Preheating in Palatini Higgs inflation,” JCAP 04, 021 (2019), arXiv:1902.10148 [hep-ph] .
- Mikhail Shaposhnikov, Andrey Shkerin, and Sebastian Zell, “Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation,” Phys. Rev. D 103, 033006 (2021a), arXiv:2001.09088 [hep-th] .
- Miklos Långvik, Juha-Matti Ojanperä, Sami Raatikainen, and Syksy Rasanen, “Higgs inflation with the Holst and the Nieh–Yan term,” Phys. Rev. D 103, 083514 (2021), arXiv:2007.12595 [astro-ph.CO] .
- Mikhail Shaposhnikov, Andrey Shkerin, Inar Timiryasov, and Sebastian Zell, “Higgs inflation in Einstein-Cartan gravity,” JCAP 02, 008 (2021b), [Erratum: JCAP 10, E01 (2021)], arXiv:2007.14978 [hep-ph] .
- Yusuke Mikura, Yuichiro Tada, and Shuichiro Yokoyama, “Conformal inflation in the metric-affine geometry,” EPL 132, 39001 (2020), arXiv:2008.00628 [hep-th] .
- Mikhail Shaposhnikov, Andrey Shkerin, Inar Timiryasov, and Sebastian Zell, “Einstein-Cartan Portal to Dark Matter,” Phys. Rev. Lett. 126, 161301 (2021c), [Erratum: Phys.Rev.Lett. 127, 169901 (2021)], arXiv:2008.11686 [hep-ph] .
- Mio Kubota, Kin-Ya Oda, Keigo Shimada, and Masahide Yamaguchi, “Cosmological Perturbations in Palatini Formalism,” JCAP 03, 006 (2021), arXiv:2010.07867 [hep-th] .
- Vera-Maria Enckell, Sami Nurmi, Syksy Räsänen, and Eemeli Tomberg, “Critical point Higgs inflation in the Palatini formulation,” JHEP 04, 059 (2021), arXiv:2012.03660 [astro-ph.CO] .
- Damianos Iosifidis and Lucrezia Ravera, “The cosmology of quadratic torsionful gravity,” Eur. Phys. J. C 81, 736 (2021), arXiv:2101.10339 [gr-qc] .
- Antonio Racioppi, Jürgen Rajasalu, and Kaspar Selke, “Multiple point criticality principle and Coleman-Weinberg inflation,” JHEP 06, 107 (2022), arXiv:2109.03238 [astro-ph.CO] .
- Christian Dioguardi, Antonio Racioppi, and Eemeli Tomberg, “Slow-roll inflation in Palatini F(R) gravity,” JHEP 06, 106 (2022), arXiv:2112.12149 [gr-qc] .
- Matteo Piani and Javier Rubio, “Higgs-Dilaton inflation in Einstein-Cartan gravity,” JCAP 05, 009 (2022), arXiv:2202.04665 [gr-qc] .
- Frédéric Dux, Adrien Florio, Juraj Klarić, Andrey Shkerin, and Inar Timiryasov, “Preheating in Palatini Higgs inflation on the lattice,” JCAP 09, 015 (2022), arXiv:2203.13286 [hep-ph] .
- Syksy Rasanen and Yosef Verbin, ‘‘Palatini formulation for gauge theory: implications for slow-roll inflation,” (2022), 10.21105/astro.2211.15584, arXiv:2211.15584 [astro-ph.CO] .
- Ioannis D. Gialamas and Hardi Veermäe, “Electroweak vacuum decay in metric-affine gravity,” (2023), arXiv:2305.07693 [hep-th] .
- Ioannis D. Gialamas, Alexandros Karam, Thomas D. Pappas, and Eemeli Tomberg, “Implications of Palatini gravity for inflation and beyond,” (2023), arXiv:2303.14148 [gr-qc] .
- Matteo Piani and Javier Rubio, “Preheating in Einstein-Cartan Higgs Inflation: Oscillon formation,” (2023), arXiv:2304.13056 [hep-ph] .
- Arthur Poisson, Inar Timiryasov, and Sebastian Zell, “Critical Points in Palatini Higgs Inflation with Small Non-Minimal Coupling,” (2023), arXiv:2306.03893 [hep-ph] .
- Claire Rigouzzo and Sebastian Zell, “Coupling Metric-Affine Gravity to the Standard Model and Dark Matter Fermions,” (2023), arXiv:2306.13134 [gr-qc] .
- K. S. Stelle, “Classical Gravity with Higher Derivatives,” Gen. Rel. Grav. 9, 353–371 (1978).
- Donald E. Neville, “A Gravity Lagrangian With Ghost Free Curvature**2 Terms,” Phys. Rev. D 18, 3535 (1978).
- Donald E. Neville, “Gravity Theories With Propagating Torsion,” Phys. Rev. D 21, 867 (1980).
- E. Sezgin and P. van Nieuwenhuizen, “New Ghost Free Gravity Lagrangians with Propagating Torsion,” Phys. Rev. D 21, 3269 (1980).
- Kenji Hayashi and Takeshi Shirafuji, “Gravity from Poincare Gauge Theory of the Fundamental Particles. 1. Linear and Quadratic Lagrangians,” Prog. Theor. Phys. 64, 866 (1980a), [Erratum: Prog.Theor.Phys. 65, 2079 (1981)].
- Kenji Hayashi and Takeshi Shirafuji, “Gravity From Poincare Gauge Theory of the Fundamental Particles. 4. Mass and Energy of Particle Spectrum,” Prog. Theor. Phys. 64, 2222 (1980b).
- R. D. Hecht, J. Lemke, and R. P. Wallner, “Tachyonic torsion shock waves in Poincare gauge theory,” Phys. Lett. A 151, 12–14 (1990).
- R. D. Hecht, J. Lemke, and R. P. Wallner, “Can Poincare gauge theory be saved?” Phys. Rev. D 44, 2442–2451 (1991).
- Hsin Chen, J. M. Nester, and Hwei-Jang Yo, “Acausal PGT modes and the nonlinear constraint effect,” Acta Phys. Polon. B 29, 961–970 (1998).
- R. D. Hecht, J. M. Nester, and V. V. Zhytnikov, “Some Poincare gauge theory Lagrangians with well posed initial value problems,” Phys. Lett. A 222, 37–42 (1996).
- Hwei-jang Yo and James M. Nester, “Hamiltonian analysis of Poincare gauge theory scalar modes,” Int. J. Mod. Phys. D 8, 459–479 (1999), arXiv:gr-qc/9902032 .
- Hwei-Jang Yo and James M. Nester, ‘‘Hamiltonian analysis of Poincare gauge theory: Higher spin modes,” Int. J. Mod. Phys. D 11, 747–780 (2002), arXiv:gr-qc/0112030 .
- W. E. V. Barker, “Geometric multipliers and partial teleparallelism in Poincaré gauge theory,” (2022), arXiv:2205.13534 [gr-qc] .
- L. H. Ford, “INFLATION DRIVEN BY A VECTOR FIELD,” Phys. Rev. D 40, 967 (1989).
- Alexey Golovnev, Viatcheslav Mukhanov, and Vitaly Vanchurin, “Vector Inflation,” JCAP 06, 009 (2008), arXiv:0802.2068 [astro-ph] .
- Takeshi Chiba, “Initial Conditions for Vector Inflation,” JCAP 08, 004 (2008), arXiv:0805.4660 [gr-qc] .
- Tomi Koivisto and David F. Mota, “Vector Field Models of Inflation and Dark Energy,” JCAP 08, 021 (2008a), arXiv:0805.4229 [astro-ph] .
- Sugumi Kanno, Masashi Kimura, Jiro Soda, and Shuichiro Yokoyama, “Anisotropic Inflation from Vector Impurity,” JCAP 08, 034 (2008), arXiv:0806.2422 [hep-ph] .
- Razieh Emami, Shinji Mukohyama, Ryo Namba, and Ying-li Zhang, “Stable solutions of inflation driven by vector fields,” JCAP 03, 058 (2017), arXiv:1612.09581 [hep-th] .
- Yeinzon Rodríguez and Andrés A. Navarro, “Non-Abelian S𝑆Sitalic_S-term dark energy and inflation,” Phys. Dark Univ. 19, 129–136 (2018), arXiv:1711.01935 [gr-qc] .
- Christian Armendariz-Picon, “Could dark energy be vector-like?” JCAP 07, 007 (2004), arXiv:astro-ph/0405267 .
- Tomi Koivisto and David F. Mota, “Accelerating Cosmologies with an Anisotropic Equation of State,” Astrophys. J. 679, 1–5 (2008b), arXiv:0707.0279 [astro-ph] .
- Gianmassimo Tasinato, “Cosmic Acceleration from Abelian Symmetry Breaking,” JHEP 04, 067 (2014), arXiv:1402.6450 [hep-th] .
- Antonio De Felice, Lavinia Heisenberg, Ryotaro Kase, Shinji Mukohyama, Shinji Tsujikawa, and Ying-li Zhang, “Cosmology in generalized Proca theories,” JCAP 06, 048 (2016a), arXiv:1603.05806 [gr-qc] .
- Antonio De Felice, Lavinia Heisenberg, Ryotaro Kase, Shinji Mukohyama, Shinji Tsujikawa, and Ying-li Zhang, “Effective gravitational couplings for cosmological perturbations in generalized Proca theories,” Phys. Rev. D 94, 044024 (2016b), arXiv:1605.05066 [gr-qc] .
- Jose Beltran Jimenez and Lavinia Heisenberg, “Generalized multi-Proca fields,” Phys. Lett. B 770, 16–26 (2017), arXiv:1610.08960 [hep-th] .
- Antonio de Felice, Lavinia Heisenberg, and Shinji Tsujikawa, “Observational constraints on generalized Proca theories,” Phys. Rev. D 95, 123540 (2017), arXiv:1703.09573 [astro-ph.CO] .
- Shintaro Nakamura, Antonio De Felice, Ryotaro Kase, and Shinji Tsujikawa, “Constraints on massive vector dark energy models from integrated Sachs-Wolfe-galaxy cross-correlations,” Phys. Rev. D 99, 063533 (2019), arXiv:1811.07541 [astro-ph.CO] .
- Lavinia Heisenberg and Hector Villarrubia-Rojo, “Proca in the sky,” JCAP 03, 032 (2021), arXiv:2010.00513 [astro-ph.CO] .
- David Benisty, Eduardo I. Guendelman, Armin van de Venn, David Vasak, Jürgen Struckmeier, and Horst Stoecker, “The dark side of the torsion: dark energy from propagating torsion,” Eur. Phys. J. C 82, 264 (2022), arXiv:2109.01052 [astro-ph.CO] .
- Claudia de Rham, Sebastian Garcia-Saenz, Lavinia Heisenberg, and Victor Pozsgay, “Cosmology of Extended Proca-Nuevo,” JCAP 03, 053 (2022), arXiv:2110.14327 [hep-th] .
- Thomas Hambye, “Hidden vector dark matter,” JHEP 01, 028 (2009), arXiv:0811.0172 [hep-ph] .
- Thomas Hambye and Michel H. G. Tytgat, “Confined hidden vector dark matter,” Phys. Lett. B 683, 39–41 (2010), arXiv:0907.1007 [hep-ph] .
- Chiara Arina, Thomas Hambye, Alejandro Ibarra, and Christoph Weniger, “Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay,” JCAP 03, 024 (2010), arXiv:0912.4496 [hep-ph] .
- Junji Hisano, Koji Ishiwata, Natsumi Nagata, and Masato Yamanaka, “Direct Detection of Vector Dark Matter,” Prog. Theor. Phys. 126, 435–456 (2011), arXiv:1012.5455 [hep-ph] .
- J. Lorenzo Diaz-Cruz and Ernest Ma, “Neutral SU(2) Gauge Extension of the Standard Model and a Vector-Boson Dark-Matter Candidate,” Phys. Lett. B 695, 264–267 (2011), arXiv:1007.2631 [hep-ph] .
- Oleg Lebedev, Hyun Min Lee, and Yann Mambrini, “Vector Higgs-portal dark matter and the invisible Higgs,” Phys. Lett. B 707, 570–576 (2012), arXiv:1111.4482 [hep-ph] .
- Yasaman Farzan and Amin Rezaei Akbarieh, “VDM: A model for Vector Dark Matter,” JCAP 10, 026 (2012), arXiv:1207.4272 [hep-ph] .
- Seungwon Baek, P. Ko, Wan-Il Park, and Eibun Senaha, “Higgs Portal Vector Dark Matter : Revisited,” JHEP 05, 036 (2013), arXiv:1212.2131 [hep-ph] .
- Alexander S. Belyaev, Marc C. Thomas, and Ilya L. Shapiro, “Torsion as a Dark Matter Candidate from the Higgs Portal,” Phys. Rev. D 95, 095033 (2017), arXiv:1611.03651 [hep-ph] .
- Giorgio Arcadi, Abdelhak Djouadi, and Marumi Kado, “The Higgs-portal for vector dark matter and the effective field theory approach: A reappraisal,” Phys. Lett. B 805, 135427 (2020), arXiv:2001.10750 [hep-ph] .
- Jacob D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D 5, 1239–1246 (1972).
- Lavinia Heisenberg, Ryotaro Kase, Masato Minamitsuji, and Shinji Tsujikawa, “Black holes in vector-tensor theories,” JCAP 08, 024 (2017), arXiv:1706.05115 [gr-qc] .
- Sebastian Garcia-Saenz, Aaron Held, and Jun Zhang, “Destabilization of Black Holes and Stars by Generalized Proca Fields,” Phys. Rev. Lett. 127, 131104 (2021), arXiv:2104.08049 [gr-qc] .
- I. L. Shapiro, “Physical aspects of the space-time torsion,” Phys. Rept. 357, 113 (2002), arXiv:hep-th/0103093 .
- Milutin Blagojevic and Friedrich W. Hehl, “Gauge Theories of Gravitation,” (2012), arXiv:1210.3775 [gr-qc] .
- Dennis W. Sciama, “The Physical structure of general relativity,” Rev. Mod. Phys. 36, 463–469 (1964), [Erratum: Rev.Mod.Phys. 36, 1103–1103 (1964)].
- Kenji Hayashi and Takeshi Shirafuji, “Gravity From Poincare Gauge Theory of the Fundamental Particles. 3. Weak Field Approximation,” Prog. Theor. Phys. 64, 1435 (1980c), [Erratum: Prog.Theor.Phys. 66, 741 (1981)].
- E. Sezgin, “Class of Ghost Free Gravity Lagrangians With Massive or Massless Propagating Torsion,” Phys. Rev. D 24, 1677–1680 (1981).
- M. Blagojevic and I. A. Nikolic, “Hamiltonian dynamics of Poincare gauge theory: General structure in the time gauge,” Phys. Rev. D 28, 2455–2463 (1983).
- M. Blagojevic and M. Vasilic, “EXTRA GAUGE SYMMETRIES IN A WEAK FIELD APPROXIMATION OF AN R + T**2 + R**2 THEORY OF GRAVITY,” Phys. Rev. D 35, 3748 (1987).
- R. Kuhfuss and J. Nitsch, “Propagating Modes in Gauge Field Theories of Gravity,” Gen. Rel. Grav. 18, 1207 (1986).
- Dirk Puetzfeld, “Status of non-Riemannian cosmology,” New Astron. Rev. 49, 59–64 (2005), arXiv:gr-qc/0404119 .
- Hwei-Jang Yo and James M. Nester, “Dynamic Scalar Torsion and an Oscillating Universe,” Mod. Phys. Lett. A 22, 2057–2069 (2007), arXiv:astro-ph/0612738 .
- Kun-Feng Shie, James M. Nester, and Hwei-Jang Yo, “Torsion Cosmology and the Accelerating Universe,” Phys. Rev. D 78, 023522 (2008), arXiv:0805.3834 [gr-qc] .
- V. P. Nair, S. Randjbar-Daemi, and V. Rubakov, “Massive Spin-2 fields of Geometric Origin in Curved Spacetimes,” Phys. Rev. D 80, 104031 (2009), arXiv:0811.3781 [hep-th] .
- V. Nikiforova, S. Randjbar-Daemi, and V. Rubakov, “Infrared Modified Gravity with Dynamical Torsion,” Phys. Rev. D 80, 124050 (2009), arXiv:0905.3732 [hep-th] .
- Hsin Chen, Fei-Hung Ho, James M. Nester, Chih-Hung Wang, and Hwei-Jang Yo, “Cosmological dynamics with propagating Lorentz connection modes of spin zero,” JCAP 10, 027 (2009), arXiv:0908.3323 [gr-qc] .
- Wei-Tou Ni, “Searches for the role of spin and polarization in gravity,” Rept. Prog. Phys. 73, 056901 (2010), arXiv:0912.5057 [gr-qc] .
- Peter Baekler, Friedrich W. Hehl, and James M. Nester, “Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes. Analytic part,” Phys. Rev. D 83, 024001 (2011), arXiv:1009.5112 [gr-qc] .
- Fei-Hung Ho and James M. Nester, “Poincaré gauge theory with even and odd parity dynamic connection modes: isotropic Bianchi cosmological models,” J. Phys. Conf. Ser. 330, 012005 (2011), arXiv:1105.5001 [gr-qc] .
- Fei-Hung Ho and James M. Nester, “Poincaré Gauge Theory With Coupled Even And Odd Parity Dynamic Spin-0 Modes: Dynamic Equations For Isotropic Bianchi Cosmologies,” Annalen Phys. 524, 97–106 (2012), arXiv:1106.0711 [gr-qc] .
- Yen Chin Ong, Keisuke Izumi, James M. Nester, and Pisin Chen, “Problems with Propagation and Time Evolution in f(T) Gravity,” Phys. Rev. D 88, 024019 (2013), arXiv:1303.0993 [gr-qc] .
- Dirk Puetzfeld and Yuri N. Obukhov, “Prospects of detecting spacetime torsion,” Int. J. Mod. Phys. D 23, 1442004 (2014), arXiv:1405.4137 [gr-qc] .
- Georgios K. Karananas, “The particle spectrum of parity-violating Poincaré gravitational theory,” Class. Quant. Grav. 32, 055012 (2015), arXiv:1411.5613 [gr-qc] .
- Wei-Tou Ni, “Searches for the role of spin and polarization in gravity: a five-year update,” Int. J. Mod. Phys. Conf. Ser. 40, 1660010 (2016), arXiv:1501.07696 [hep-ph] .
- Fei-Hung Ho, Hsin Chen, James M. Nester, and Hwei-Jang Yo, “General Poincaré Gauge Theory Cosmology,” Chin. J. Phys. 53, 110109 (2015), arXiv:1512.01202 [gr-qc] .
- Yuri N. Obukhov, “Gravitational waves in Poincaré gauge gravity theory,” Phys. Rev. D 95, 084028 (2017), arXiv:1702.05185 [gr-qc] .
- Milutin Blagojević, Branislav Cvetković, and Yuri N. Obukhov, “Generalized plane waves in Poincaré gauge theory of gravity,” Phys. Rev. D 96, 064031 (2017), arXiv:1708.08766 [gr-qc] .
- Milutin Blagojević and Branislav Cvetković, “General Poincaré gauge theory: Hamiltonian structure and particle spectrum,” Phys. Rev. D 98, 024014 (2018), arXiv:1804.05556 [gr-qc] .
- Huan-Hsin Tseng, Gravitational Theories with Torsion, Ph.D. thesis, Taiwan, Natl. Tsing Hua U. (2018), arXiv:1812.00314 [gr-qc] .
- Yun-Cherng Lin, Michael P. Hobson, and Anthony N. Lasenby, “Ghost and tachyon free Poincaré gauge theories: A systematic approach,” Phys. Rev. D 99, 064001 (2019), arXiv:1812.02675 [gr-qc] .
- Jose Beltrán Jiménez and Adria Delhom, “Ghosts in metric-affine higher order curvature gravity,” Eur. Phys. J. C 79, 656 (2019), arXiv:1901.08988 [gr-qc] .
- Hongchao Zhang and Lixin Xu, ‘‘Late-time acceleration and inflation in a Poincaré gauge cosmological model,” JCAP 09, 050 (2019), arXiv:1904.03545 [gr-qc] .
- Katsuki Aoki and Keigo Shimada, “Scalar-metric-affine theories: Can we get ghost-free theories from symmetry?” Phys. Rev. D 100, 044037 (2019), arXiv:1904.10175 [hep-th] .
- Hongchao Zhang and Lixin Xu, “Inflation in the parity-conserving Poincaré gauge cosmology,” JCAP 10, 003 (2020), arXiv:1906.04340 [gr-qc] .
- Jose Beltrán Jiménez and Francisco José Maldonado Torralba, “Revisiting the stability of quadratic Poincaré gauge gravity,” Eur. Phys. J. C 80, 611 (2020a), arXiv:1910.07506 [gr-qc] .
- R. Percacci and E. Sezgin, “New class of ghost- and tachyon-free metric affine gravities,” Phys. Rev. D 101, 084040 (2020a), arXiv:1912.01023 [hep-th] .
- W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J. Handley, “Systematic study of background cosmology in unitary Poincaré gauge theories with application to emergent dark radiation and H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension,” Phys. Rev. D 102, 024048 (2020), arXiv:2003.02690 [gr-qc] .
- Jose Beltrán Jiménez and Adrià Delhom, “Instabilities in metric-affine theories of gravity with higher order curvature terms,” Eur. Phys. J. C 80, 585 (2020), arXiv:2004.11357 [gr-qc] .
- W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J. Handley, “Nonlinear Hamiltonian analysis of new quadratic torsion theories: Cases with curvature-free constraints,” Phys. Rev. D 104, 084036 (2021), arXiv:2101.02645 [gr-qc] .
- Francisco José Maldonado Torralba, New effective theories of gravitation and their phenomenological consequences, Ph.D. thesis, Cape Town U., Dept. Math. (2020), arXiv:2101.11523 [gr-qc] .
- Carlo Marzo, ‘‘Ghost and tachyon free propagation up to spin 3 in Lorentz invariant field theories,” Phys. Rev. D 105, 065017 (2022a), arXiv:2108.11982 [hep-ph] .
- Carlo Marzo, “Radiatively stable ghost and tachyon freedom in metric affine gravity,” Phys. Rev. D 106, 024045 (2022b), arXiv:2110.14788 [hep-th] .
- A. Baldazzi, O. Melichev, and R. Percacci, “Metric-Affine Gravity as an effective field theory,” Annals Phys. 438, 168757 (2022), arXiv:2112.10193 [gr-qc] .
- Jaakko Annala and Syksy Rasanen, “Stability of non-degenerate Ricci-type Palatini theories,” JCAP 04, 014 (2023), arXiv:2212.09820 [gr-qc] .
- A. Dimakis, “The Initial Value Problem of the Poincare Gauge Theory in Vacuum. 1: Second Order Formalism,” Ann. Inst. H. Poincare Phys. Theor. 51, 371–388 (1989a).
- A. Dimakis, “THE INITIAL VALUE PROBLEM OF THE POINCARE GAUGE THEORY IN VACUUM. 1: FIRST ORDER FORMALISM,” Ann. Inst. H. Poincare Phys. Theor. 51, 389–417 (1989b).
- J. Lemke, “Shock waves in the Poincare gauge theory of gravitation,” Phys. Lett. A 143, 13–16 (1990).
- Niayesh Afshordi, Daniel J. H. Chung, and Ghazal Geshnizjani, “Cuscuton: A Causal Field Theory with an Infinite Speed of Sound,” Phys. Rev. D 75, 083513 (2007), arXiv:hep-th/0609150 .
- Joao Magueijo, “Bimetric varying speed of light theories and primordial fluctuations,” Phys. Rev. D 79, 043525 (2009), arXiv:0807.1689 [gr-qc] .
- G. Velo and D. Zwanziger, “Noncausality and other defects of interaction lagrangians for particles with spin one and higher,” Phys. Rev. 188, 2218–2222 (1969).
- C. Aragone and Stanley Deser, “Constraints on gravitationally coupled tensor fields,” Nuovo Cim. A 3, 709–720 (1971).
- Wen-Hao Cheng, De-Ching Chern, and J. M. Nester, “Canonical Analysis of the One Parameter Teleparallel Theory,” Phys. Rev. D 38, 2656–2658 (1988).
- Daniel Blixt, Manuel Hohmann, and Christian Pfeifer, “Hamiltonian and primary constraints of new general relativity,” Phys. Rev. D 99, 084025 (2019a), arXiv:1811.11137 [gr-qc] .
- Daniel Blixt, Manuel Hohmann, Martin Krššák, and Christian Pfeifer, “Hamiltonian Analysis In New General Relativity,” in 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (World Scientific Publishing Co Pte Ltd, Singapore, 2019) arXiv:1905.11919 [gr-qc] .
- Kirill Krasnov and Ermis Mitsou, “Pure Lorentz spin connection theories and uniqueness of general relativity,” Class. Quant. Grav. 38, 205009 (2021), arXiv:2106.05803 [gr-qc] .
- Sebastian Bahamonde, Konstantinos F. Dialektopoulos, Celia Escamilla-Rivera, Gabriel Farrugia, Viktor Gakis, Martin Hendry, Manuel Hohmann, Jackson Levi Said, Jurgen Mifsud, and Eleonora Di Valentino, “Teleparallel gravity: from theory to cosmology,” Rept. Prog. Phys. 86, 026901 (2023), arXiv:2106.13793 [gr-qc] .
- M. Blagojević and B. Cvetković, “Three-dimensional gravity with propagating torsion: Hamiltonian structure of the scalar sector,” Phys. Rev. D 88, 104032 (2013a), arXiv:1309.0411 [gr-qc] .
- M. Blagojević and B. Cvetković, “Poincaré gauge theory in 3D: canonical stability of the scalar sector,” (2013b), arXiv:1310.8309 [gr-qc] .
- Jose Beltrán Jiménez and Francisco José Maldonado Torralba, “Revisiting the stability of quadratic Poincaré gauge gravity,” Eur. Phys. J. C 80, 611 (2020b), arXiv:1910.07506 [gr-qc] .
- Katsuki Aoki, “Nonlinearly ghost-free higher curvature gravity,” Phys. Rev. D 102, 124049 (2020), arXiv:2009.11739 [hep-th] .
- Christos Charmousis and Antonio Padilla, “The Instability of Vacua in Gauss-Bonnet Gravity,” JHEP 12, 038 (2008), arXiv:0807.2864 [hep-th] .
- Christos Charmousis, Gustavo Niz, Antonio Padilla, and Paul M. Saffin, “Strong coupling in Horava gravity,” JHEP 08, 070 (2009), arXiv:0905.2579 [hep-th] .
- Antonios Papazoglou and Thomas P. Sotiriou, “Strong coupling in extended Horava-Lifshitz gravity,” Phys. Lett. B 685, 197–200 (2010), arXiv:0911.1299 [hep-th] .
- Daniel Baumann, Leonardo Senatore, and Matias Zaldarriaga, “Scale-Invariance and the Strong Coupling Problem,” JCAP 05, 004 (2011), arXiv:1101.3320 [hep-th] .
- Anzhong Wang, “Hořava gravity at a Lifshitz point: A progress report,” Int. J. Mod. Phys. D 26, 1730014 (2017), arXiv:1701.06087 [gr-qc] .
- Alejandro Jiménez Cano, Metric-affine Gauge theories of gravity. Foundations and new insights, Ph.D. thesis, Granada U., Theor. Phys. Astrophys. (2021), arXiv:2201.12847 [gr-qc] .
- W. E. V. Barker, “Supercomputers against strong coupling in gravity with curvature and torsion,” Eur. Phys. J. C 83, 228 (2023), arXiv:2206.00658 [gr-qc] .
- G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, and A. J. Tolley, “Massive Cosmologies,” Phys. Rev. D 84, 124046 (2011), arXiv:1108.5231 [hep-th] .
- A. Emir Gumrukcuoglu, Chunshan Lin, and Shinji Mukohyama, “Anisotropic Friedmann-Robertson-Walker universe from nonlinear massive gravity,” Phys. Lett. B 717, 295–298 (2012), arXiv:1206.2723 [hep-th] .
- Charles Mazuet, Shinji Mukohyama, and Mikhail S. Volkov, “Anisotropic deformations of spatially open cosmology in massive gravity theory,” JCAP 04, 039 (2017), arXiv:1702.04205 [hep-th] .
- Jose Beltrán Jiménez and Alejandro Jiménez-Cano, “On the strong coupling of Einsteinian Cubic Gravity and its generalisations,” JCAP 01, 069 (2021), arXiv:2009.08197 [gr-qc] .
- A. I. Vainshtein, “To the problem of nonvanishing gravitation mass,” Phys. Lett. B 39, 393–394 (1972).
- Cedric Deffayet, G. R. Dvali, Gregory Gabadadze, and Arkady I. Vainshtein, “Nonperturbative continuity in graviton mass versus perturbative discontinuity,” Phys. Rev. D 65, 044026 (2002), arXiv:hep-th/0106001 .
- Cedric Deffayet and Jan-Willem Rombouts, “Ghosts, strong coupling and accidental symmetries in massive gravity,” Phys. Rev. D 72, 044003 (2005), arXiv:gr-qc/0505134 .
- Claudia de Rham, “Massive Gravity,” Living Rev. Rel. 17, 7 (2014), arXiv:1401.4173 [hep-th] .
- S. Deser, M. Sandora, A. Waldron, and G. Zahariade, “Covariant constraints for generic massive gravity and analysis of its characteristics,” Phys. Rev. D 90, 104043 (2014), arXiv:1408.0561 [hep-th] .
- R. Percacci and E. Sezgin, “New class of ghost- and tachyon-free metric affine gravities,” Phys. Rev. D 101, 084040 (2020b), arXiv:1912.01023 [hep-th] .
- Marco Piva, “Massive higher-spin multiplets and asymptotic freedom in quantum gravity,” Phys. Rev. D 105, 045006 (2022), arXiv:2110.09649 [hep-th] .
- Damianos Iosifidis, Ratbay Myrzakulov, Lucrezia Ravera, Gulmira Yergaliyeva, and Koblandy Yerzhanov, “Metric-Affine Vector–Tensor correspondence and implications in F(R,T,Q,T,D) gravity,” Phys. Dark Univ. 37, 101094 (2022), arXiv:2111.14214 [gr-qc] .
- Alejandro Jiménez-Cano and Francisco José Maldonado Torralba, “Vector stability in quadratic metric-affine theories,” JCAP 09, 044 (2022), arXiv:2205.05674 [gr-qc] .
- Damianos Iosifidis and Konstantinos Pallikaris, “Describing metric-affine theories anew: alternative frameworks, examples and solutions,” JCAP 05, 037 (2023), arXiv:2301.11364 [gr-qc] .
- Sean M. Carroll and George B. Field, “Consequences of propagating torsion in connection dynamic theories of gravity,” Phys. Rev. D 50, 3867–3873 (1994), arXiv:gr-qc/9403058 .
- A. S. Belyaev and Ilya L. Shapiro, “The Action for the (propagating) torsion and the limits on the torsion parameters from present experimental data,” Phys. Lett. B 425, 246–254 (1998), arXiv:hep-ph/9712503 .
- Dan N. Vollick, “Einstein-Maxwell and Einstein-Proca theory from a modified gravitational action,” (2006), arXiv:gr-qc/0601016 .
- Basabendu Barman, Tapobroto Bhanja, Debottam Das, and Debaprasad Maity, “Minimal model of torsion mediated dark matter,” Phys. Rev. D 101, 075017 (2020), arXiv:1912.09249 [hep-ph] .
- M. O. Katanaev, “Gravity with dynamical torsion,” Class. Quant. Grav. 38, 015014 (2021), arXiv:2109.09546 [gr-qc] .
- Jose Beltran Jimenez and Tomi S. Koivisto, “Extended Gauss-Bonnet gravities in Weyl geometry,” Class. Quant. Grav. 31, 135002 (2014), arXiv:1402.1846 [gr-qc] .
- Damianos Iosifidis, Christos G. Tsagas, and Anastasios C. Petkou, “Raychaudhuri equation in spacetimes with torsion and nonmetricity,” Phys. Rev. D 98, 104037 (2018), arXiv:1809.04992 [gr-qc] .
- Damianos Iosifidis and Tomi Koivisto, “Scale transformations in metric-affine geometry,” Universe 5, 82 (2019), arXiv:1810.12276 [gr-qc] .
- Thomas Helpin and Mikhail S. Volkov, “A metric-affine version of the Horndeski theory,” Int. J. Mod. Phys. A 35, 2040010 (2020), arXiv:1911.12768 [hep-th] .
- José Alberto Orejuela García, Lovelock Theories as extensions to General Relativity, Ph.D. thesis, U. Granada (main) (2020).
- D. M. Ghilencea, “Palatini quadratic gravity: spontaneous breaking of gauged scale symmetry and inflation,” Eur. Phys. J. C 80, 1147 (2020), arXiv:2003.08516 [hep-th] .
- Jose Beltrán Jiménez, Lavinia Heisenberg, and Tomi Koivisto, “The coupling of matter and spacetime geometry,” Class. Quant. Grav. 37, 195013 (2020b), arXiv:2004.04606 [hep-th] .
- Yixin Xu, Tiberiu Harko, Shahab Shahidi, and Shi-Dong Liang, “Weyl type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity, and its cosmological implications,” Eur. Phys. J. C 80, 449 (2020), arXiv:2005.04025 [gr-qc] .
- Jin-Zhao Yang, Shahab Shahidi, Tiberiu Harko, and Shi-Dong Liang, “Geodesic deviation, Raychaudhuri equation, Newtonian limit, and tidal forces in Weyl-type f(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity,” Eur. Phys. J. C 81, 111 (2021), arXiv:2101.09956 [gr-qc] .
- Israel Quiros, “Nonmetricity theories and aspects of gauge symmetry,” Phys. Rev. D 105, 104060 (2022), arXiv:2111.05490 [gr-qc] .
- Israel Quiros, “Phenomenological signatures of gauge invariant theories of gravity with vectorial nonmetricity,” Phys. Rev. D 107, 104028 (2023), arXiv:2208.10048 [gr-qc] .
- Jin-Zhao Yang, Shahab Shahidi, and Tiberiu Harko, “Black hole solutions in the quadratic Weyl conformal geometric theory of gravity,” Eur. Phys. J. C 82, 1171 (2022), arXiv:2212.05542 [gr-qc] .
- Piyabut Burikham, Tiberiu Harko, Kulapant Pimsamarn, and Shahab Shahidi, “Dark matter as a Weyl geometric effect,” Phys. Rev. D 107, 064008 (2023), arXiv:2302.08289 [gr-qc] .
- Zahra Haghani and Tiberiu Harko, “Compact stellar structures in Weyl geometric gravity,” Phys. Rev. D 107, 064068 (2023), arXiv:2303.10339 [gr-qc] .
- A K Aringazin and A L Mikhailov, “Matter fields in spacetime with vector nonmetricity,” Class. Quant. Grav. 8, 1685 (1991).
- Vincenzo Vitagliano, Thomas P. Sotiriou, and Stefano Liberati, “The dynamics of generalized Palatini Theories of Gravity,” Phys. Rev. D 82, 084007 (2010), arXiv:1007.3937 [gr-qc] .
- Jose Beltran Jimenez, Lavinia Heisenberg, and Tomi S. Koivisto, “Cosmology for quadratic gravity in generalized Weyl geometry,” JCAP 04, 046 (2016), arXiv:1602.07287 [hep-th] .
- Damianos Iosifidis, “Exactly Solvable Connections in Metric-Affine Gravity,” Class. Quant. Grav. 36, 085001 (2019), arXiv:1812.04031 [gr-qc] .
- W. Barker and S. Zell, Supplemental materials: Field equations, See Supplemental Material at www.github.com/wevbarker/SupplementalMaterials-2306.
- M. Henneaux and C. Teitelboim, “P FORM ELECTRODYNAMICS,” Found. Phys. 16, 593–617 (1986).
- W. Barker and S. Zell, Supplemental materials: Multipliers are not trivial, See Supplemental Material at www.github.com/wevbarker/SupplementalMaterials-2306.
- Jose Beltrán Jiménez, Lavinia Heisenberg, and Tomi S. Koivisto, “Teleparallel Palatini theories,” JCAP 08, 039 (2018), arXiv:1803.10185 [gr-qc] .
- James L. Anderson and Peter G. Bergmann, “Constraints in covariant field theories,” Phys. Rev. 83, 1018–1025 (1951).
- Peter G. Bergmann and Irwin Goldberg, “Dirac bracket transformations in phase space,” Phys. Rev. 98, 531–538 (1955).
- Leonardo Castellani, “Symmetries in Constrained Hamiltonian Systems,” Annals Phys. 143, 357 (1982).
- M. Henneaux and C. Teitelboim, Quantization of gauge systems (Princeton University Press, Princeton, 1992).
- Alexey Golovnev, “On the Role of Constraints and Degrees of Freedom in the Hamiltonian Formalism,” Universe 9, 101 (2023), arXiv:2212.11260 [hep-th] .
- W Kopczynski, “Problems with metric-teleparallel theories of gravitation,” Journal of Physics A: Mathematical and General 15, 493–506 (1982).
- A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile neutrino Dark Matter,” Prog. Part. Nucl. Phys. 104, 1–45 (2019), arXiv:1807.07938 [hep-ph] .
- Mikhail Shaposhnikov, Andrey Shkerin, Inar Timiryasov, and Sebastian Zell, “Einstein-Cartan gravity, matter, and scale-invariant generalization ,” JHEP 10, 177 (2020), arXiv:2007.16158 [hep-th] .
- Georgios K. Karananas, Mikhail Shaposhnikov, Andrey Shkerin, and Sebastian Zell, “Matter matters in Einstein-Cartan gravity,” Phys. Rev. D 104, 064036 (2021), arXiv:2106.13811 [hep-th] .
- Antonella Garzilli, Andrii Magalich, Tom Theuns, Carlos S. Frenk, Christoph Weniger, Oleg Ruchayskiy, and Alexey Boyarsky, “The Lyman-α𝛼\alphaitalic_α forest as a diagnostic of the nature of the dark matter,” Mon. Not. Roy. Astron. Soc. 489, 3456–3471 (2019), arXiv:1809.06585 [astro-ph.CO] .
- Antonella Garzilli, Andrii Magalich, Oleg Ruchayskiy, and Alexey Boyarsky, “How to constrain warm dark matter with the Lyman-α𝛼\alphaitalic_α forest,” Mon. Not. Roy. Astron. Soc. 502, 2356–2363 (2021), arXiv:1912.09397 [astro-ph.CO] .
- Syksy Rasanen, “Higgs inflation in the Palatini formulation with kinetic terms for the metric,” Open J. Astrophys. 2, 1 (2019), arXiv:1811.09514 [gr-qc] .
- Sami Raatikainen and Syksy Rasanen, “Higgs inflation and teleparallel gravity,” JCAP 12, 021 (2019), arXiv:1910.03488 [gr-qc] .
- Emmanuele Battista and Vittorio De Falco, “First post-Newtonian generation of gravitational waves in Einstein-Cartan theory,” Phys. Rev. D 104, 084067 (2021), arXiv:2109.01384 [gr-qc] .
- Oleg Melichev and Roberto Percacci, “On the renormalization of Poincaré gauge theories,” (2023), arXiv:2307.02336 [hep-th] .
- W. Barker and S. Zell, Supplemental materials: Hamiltonian analysis, See Supplemental Material at www.github.com/wevbarker/SupplementalMaterials-2306.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.