Higher-order Motif-based Time Series Classification for Forced Oscillation Source Location in Power Grids (2306.13397v1)
Abstract: Time series motifs are used for discovering higher-order structures of time series data. Based on time series motifs, the motif embedding correlation field (MECF) is proposed to characterize higher-order temporal structures of dynamical system time series. A MECF-based unsupervised learning approach is applied in locating the source of the forced oscillation (FO), a periodic disturbance that detrimentally impacts power grids. Locating the FO source is imperative for system stability. Compared with the Fourier analysis, the MECF-based unsupervised learning is applicable under various FO situations, including the single FO, FO with resonance, and multiple sources FOs. The MECF-based unsupervised learning is a data-driven approach without any prior knowledge requirement of system models or typologies. Tests on the UK high-voltage transmission grid illustrate the effectiveness of MECF-based unsupervised learning. In addition, the impacts of coupling strength and measurement noise on locating the FO source by the MECF-based unsupervised learning are investigated.
- Severiano, C.A., Silva, P.C.d.L., Cohen, M.W., Guimarães, F.G.: Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems. Renewable Energy 171, 764–783 (2021) Zeyringer et al. [2018] Zeyringer, M., Price, J., Fais, B., Li, P.-H., Sharp, E.: Designing low-carbon power systems for great britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy 3(5), 395–403 (2018) Fadlallah et al. [2013] Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zeyringer, M., Price, J., Fais, B., Li, P.-H., Sharp, E.: Designing low-carbon power systems for great britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy 3(5), 395–403 (2018) Fadlallah et al. [2013] Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Zeyringer, M., Price, J., Fais, B., Li, P.-H., Sharp, E.: Designing low-carbon power systems for great britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy 3(5), 395–403 (2018) Fadlallah et al. [2013] Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013) Zhang et al. [2020] Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Zhang, Y., Gan, F., Chen, X.: Motif difference field: An effective image-based time series classification and applications in machine malfunction detection. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3079–3083 (2020) Orazov et al. [2012] Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter: non-resonant instability, limit cycles, and bounded oscillations. Nonlinear Dynamics 67, 1135–1146 (2012) Inoue and Ishida [2008] Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dynamics 52, 103–113 (2008) Han and Bi [2023] Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Han, X., Bi, Q.: Effects of amplitude modulation on mixed-mode oscillations in the forced van der pol equation. Nonlinear Dynamics, 1–10 (2023) Ghorbaniparvar [2017] Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Ghorbaniparvar, M.: Survey on forced oscillations in power system. Journal of Modern Power Systems and Clean Energy 5(5), 671–682 (2017) Ye et al. [2016] Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Ye, H., Liu, Y., Zhang, P., Du, Z.: Analysis and detection of forced oscillation in power system. IEEE Transactions on Power Systems 32(2), 1149–1160 (2016) Follum et al. [2016] Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Follum, J., Pierre, J.W., Martin, R.: Simultaneous estimation of electromechanical modes and forced oscillations. IEEE Transactions on Power Systems 32(5), 3958–3967 (2016) Mondal et al. [2019] Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Mondal, B., Choudhury, A.K., Viswanadh, M., Barnwal, S., Jain, D.: Application of pmu and scada data for estimation of source of forced oscillation. In: 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), pp. 1–7 (2019). IEEE Wang and Sun [2017] Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Wang, B., Sun, K.: Location methods of oscillation sources in power systems: a survey. Journal of modern power systems and clean energy 5(2), 151–159 (2017) Tang et al. [2016] Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Tang, F., Wang, B., Liao, Q., Pisani, C., Dong, C., Jia, J., Guo, K.: Research on forced oscillations disturbance source locating through an energy approach. International Transactions on Electrical Energy Systems 26(1), 192–207 (2016) Maslennikov and Litvinov [2020] Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Maslennikov, S., Litvinov, E.: Iso new england experience in locating the source of oscillations online. IEEE Transactions on Power Systems 36(1), 495–503 (2020) Li et al. [2018] Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Li, S., Luan, M., Gan, D., Wu, D.: A model-based decoupling observer to locate forced oscillation sources in mechanical power. International Journal of Electrical Power & Energy Systems 103, 127–135 (2018) Zhou et al. [2017] Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: Locating sources of forced oscillations using transfer functions. In: 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2017). IEEE Nudell and Chakrabortty [2015] Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Nudell, T.R., Chakrabortty, A.: Graph-theoretic methods for measurement-based input localization in large networked dynamic systems. IEEE Transactions on Automatic Control 60(8), 2114–2128 (2015) Huang et al. [2018] Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Huang, T., Freris, N.M., Kumar, P., Xie, L.: Localization of forced oscillations in the power grid under resonance conditions. In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2018). IEEE Usman and Faruque [2019] Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Usman, M.U., Faruque, M.O.: Applications of synchrophasor technologies in power systems. Journal of Modern Power Systems and Clean Energy 7(2), 211–226 (2019) Meng et al. [2020] Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Meng, Y., Yu, Z., Lu, N., Shi, D.: Time series classification for locating forced oscillation sources. IEEE Transactions on Smart Grid 12(2), 1712–1721 (2020) Chevalier et al. [2018] Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Chevalier, S., Vorobev, P., Turitsyn, K.: A bayesian approach to forced oscillation source location given uncertain generator parameters. IEEE Transactions on Power Systems 34(2), 1641–1649 (2018) Feng et al. [2022] Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Feng, S., Chen, J., Ye, Y., Wu, X., Cui, H., Tang, Y., Lei, J.: A two-stage deep transfer learning for localisation of forced oscillations disturbance source. International Journal of Electrical Power & Energy Systems 135, 107577 (2022) Talukder et al. [2021] Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Talukder, S., Liu, S., Wang, H., Zheng, G.: Low-frequency forced oscillation source location for bulk power systems: A deep learning approach. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3499–3404 (2021). IEEE Matar et al. [2023] Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Matar, M., Estevez, P.G., Marchi, P., Messina, F., Elmoudi, R., Wshah, S.: Transformer-based deep learning model for forced oscillation localization. International Journal of Electrical Power & Energy Systems 146, 108805 (2023) Huang et al. [2020] Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Huang, T., Freris, N.M., Kumar, P., Xie, L.: A synchrophasor data-driven method for forced oscillation localization under resonance conditions. IEEE Transactions on Power Systems 35(5), 3927–3939 (2020) Anvari et al. [2020] Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Anvari, M., Hellmann, F., Zhang, X.: Introduction to focus issue: Dynamics of modern power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6), 063140 (2020) Dörfler et al. [2013] Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences 110(6), 2005–2010 (2013) Choi and Li [2019] Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Choi, Y.-P., Li, Z.: Synchronization of nonuniform kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32(2), 559 (2019) Filatrella et al. [2008] Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B 61(4), 485–491 (2008) Kosterev et al. [1999] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: Model validation for the august 10, 1996 wscc system outage. IEEE transactions on power systems 14(3), 967–979 (1999) Thiel et al. [2006] Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Thiel, M., Romano, M.C., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics 44, 299–305 (2006) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Feller [1967] Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Feller, W.: An introduction to probability theory and its applications. Technical report, Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New York, 1968 (1967) Manik et al. [2014] Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E., Timme, M.: Supply networks: Instabilities without overload. The European Physical Journal Special Topics 223(12), 2527–2547 (2014) Simonsen et al. [2008] Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Physical review letters 100(21), 218701 (2008) Hens et al. [2019] Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nature Physics 15(4), 403–412 (2019) Khan and Pierre [2019] Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Khan, M.A., Pierre, J.W.: Separable estimation of ambient noise spectrum in synchrophasor measurements in the presence of forced oscillations. IEEE Transactions on Power Systems 35(1), 415–423 (2019) Rohden et al. [2014] Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(1), 013123 (2014) Rohden et al. [2012] Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Physical review letters 109(6), 064101 (2012) Brown et al. [2016] Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Brown, M., Biswal, M., Brahma, S., Ranade, S.J., Cao, H.: Characterizing and quantifying noise in pmu data. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). IEEE Zhang et al. [2020] Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020) Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
- Zhang, X., Lu, C., Lin, J., Wang, Y.: Experimental test of pmu measurement errors and the impact on load model parameter identification. IET Generation, Transmission & Distribution 14(20), 4593–4604 (2020)
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.