Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Forced Oscillation Localization using Inferred Impulse Responses (2310.01656v2)

Published 2 Oct 2023 in eess.SY, cs.SY, and eess.SP

Abstract: Poorly damped oscillations pose threats to the stability and reliability of interconnected power systems. In this work, we propose a comprehensive data-driven framework for inferring the sources of forced oscillation (FO) using solely synchrophasor measurements. During normal grid operations, fast-rate ambient data are collected to recover the impulse responses in the small-signal regime, without requiring the system model. When FO events occur, the source is estimated based on the frequency domain analysis by fitting the least-squares (LS) error for the FO data using the impulse responses recovered previously. Although the proposed framework is purely data-driven, the result has been established theoretically via model-based analysis of linearized dynamics under a few realistic assumptions. Numerical validations demonstrate its applicability to realistic power systems including nonlinear, higher-order dynamics with control effects using the IEEE 68-bus system, and the 240-bus system from the IEEE-NASPI FO source location contest. The generalizability of the proposed methodology has been validated using different types of measurements and partial sensor coverage conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. NERC, “Recommended Oscillation Analysis for Monitoring and Mitigation Reference Document,” NERC: Atlanta, GA, USA, Nov. 2021.
  2. L. Chen, D. Trudnowski, L. Dosiek, S. Kamalasadan, Y. Xu, and X. Wang, “Forced Oscillations in Power Systems,” IEEE TR110, 2023.
  3. S. Maslennikov, B. Wang, and E. Litvinov, “Dissipating energy flow method for locating the source of sustained oscillations,” International Journal of Electrical Power & Energy Systems, vol. 88, pp. 55–62, 2017.
  4. D. Osipov, S. Konstantinopoulos, and J. H. Chow, “A Cross-Power Spectral Density Method for Locating Oscillation Sources using Synchrophasor Measurements,” IEEE Trans. Power Syst., pp. 1–9, 2022.
  5. L. Chen, Y. Min, and W. Hu, “An energy-based method for location of power system oscillation source,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 828–836, 2013.
  6. S. Maslennikov and E. Litvinov, “ISO New England Experience in Locating the Source of Oscillations Online,” IEEE Trans. Power Syst., vol. 36, no. 1, pp. 495–503, 2021.
  7. B. C. Lesieutre, Y. Abdennadher, and S. Roy, “Model-enhanced localization of forced oscillation using pmu data,” in Allerton Conf. on Communication, Control, and Computing.   IEEE, 2022, pp. 1–8.
  8. T. Huang, N. M. Freris, P. R. Kumar, and L. Xie, “A Synchrophasor Data-Driven Method for Forced Oscillation Localization Under Resonance Conditions,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3927–3939, 2020.
  9. R. Delabays, A. Y. Lokhov, M. Tyloo, and M. Vuffray, “Locating the source of forced oscillations in transmission power grids,” PRX Energy, vol. 2, p. 023009, Jun 2023.
  10. Y. Cai, X. Wang, G. Joós, and I. Kamwa, “An online data-driven method to locate forced oscillation sources from power plants based on sparse identification of nonlinear dynamics (SINDy),” IEEE Trans. Power Syst., vol. 38, no. 3, pp. 2085–2099, 2022.
  11. P. Huynh, H. Zhu, Q. Chen, and A. E. Elbanna, “Data-driven estimation of frequency response from ambient synchrophasor measurements,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6590–6599, 2018.
  12. S. Liu, H. Zhu, and V. Kekatos, “Dynamic response recovery using ambient synchrophasor data: A synthetic Texas Interconnection case study,” in Hawaii Intl. Conf. on System Sciences (HICSS), Maui, HI, Jan. 2023.
  13. R. B. Arthur and V. Vittal, “Power System Analysis,” 2nd ed., London: UK, pp. 532–538, 2000.
  14. S. C. Chevalier and P. D. Hines, “Mitigating the risk of voltage collapse using statistical measures from PMU data,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 120–128, 2018.
  15. S. A. N. Sarmadi and V. Venkatasubramanian, “Inter-Area Resonance in Power Systems From Forced Oscillations,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 378–386, 2016.
  16. M. Jalali, V. Kekatos, S. Bhela, and H. Zhu, “Inferring power system frequency oscillations using Gaussian processes,” in IEEE Conf. on Decision and Control, Austin, TX, 2021, pp. 3670–3676.
  17. F. Paganini and E. Mallada, “Global Analysis of Synchronization Performance for Power Systems: Bridging the Theory-Practice Gap,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 3007–3022, 2020.
  18. P. Mackin, R. Daschmans, B. Williams, B. Haney, R. Hung, and J. Ellis, “Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation,” LBNL Technical Report, Dec. 2010. [Online]. Available: https://www.osti.gov/biblio/1004165
  19. D. J. Trudnowski, “Estimating electromechanical mode shape from synchrophasor measurements,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1188–1195, 2008.
  20. H. Zhu and G. B. Giannakis, “Sparse overcomplete representations for efficient identification of power line outages,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2215–2224, 2012.
  21. D. Hale, “An efficient method for computing local cross-correlations of multi-dimensional signals,” CWP Report, vol. 656, 2006.
  22. B. Wang and S. Maslennikov, “IEEE-NASPI oscillation source location contest-case development and results,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2021.
  23. J. Chow and K. Cheung, “A toolbox for power system dynamics and control engineering education and research,” IEEE Trans. Power Syst., vol. 7, no. 4, pp. 1559–1564, 1992.
  24. H. Yuan, R. S. Biswas, J. Tan, and Y. Zhang, “Developing a reduced 240-bus wecc dynamic model for frequency response study of high renewable integration,” in 2020 IEEE/PES transmission and distribution conference and exposition (T&D).   IEEE, 2020, pp. 1–5.

Summary

We haven't generated a summary for this paper yet.