Papers
Topics
Authors
Recent
2000 character limit reached

Modelling non-Markovian noise in driven superconducting qubits (2306.13021v1)

Published 22 Jun 2023 in quant-ph

Abstract: Non-Markovian noise can be a significant source of errors in superconducting qubits. We develop gate sequences utilising mirrored pseudoidentities that allow us to characterise and model the effects of non-Markovian noise on both idle and driven qubits. We compare three approaches to modelling the observed noise: (i) a Markovian noise model, (ii) a model including interactions with a two-level system (TLS), (iii) a model utilising the post Markovian master equation (PMME), which we show to be equivalent to the qubit-TLS model in certain regimes. When running our noise characterisation circuits on a superconducting qubit device we find that purely Markovian noise models cannot reproduce the experimental data. Our model based on a qubit-TLS interaction, on the other hand, is able to closely capture the observed experimental behaviour for both idle and driven qubits. We investigate the stability of the noise properties of the hardware over time, and find that the parameter governing the qubit-TLS interaction strength fluctuates significantly even over short time-scales of a few minutes. Finally, we evaluate the changes in the noise parameters when increasing the qubit drive pulse amplitude. We find that although the hardware noise parameters fluctuate significantly over different days, their drive pulse induced relative variation is rather well defined within computed uncertainties: both the phase error and the qubit-TLS interaction strength change significantly with the pulse strength, with the phase error changing quadratically with the amplitude of the applied pulse. Since our noise model can closely describe the behaviour of idle and driven qubits, it is ideally suited to be used in the development of quantum error mitigation and correction methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube