Papers
Topics
Authors
Recent
2000 character limit reached

A Search Strategy and Vessel Detection in Maritime Environment Using Fixed-Wing UAVs (2306.12767v1)

Published 22 Jun 2023 in cs.RO

Abstract: In this paper, we address the problem of autonomous search and vessel detection in an unknown GNSS-denied maritime environment with fixed-wing UAVs. The main challenge in such environments with limited localization, communication range, and the total number of UAVs and sensors is to implement an appropriate search strategy so that a target vessel can be detected as soon as possible. Thus we present informed and non-informed methods used to search the environment. The informed method relies on an obtained probabilistic map, while the non-informed method navigates the UAVs along predefined paths computed with respect to the environment. The vessel detection method is trained on synthetic data collected in the simulator with data annotation tools. Comparative experiments in simulation have shown that our combination of sensors, search methods and a vessel detection algorithm leads to a successful search for the target vessel in such challenging environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. “Aspire website.” https://www.aspireuae.ae/.
  2. “Mbzirc2023 website.” https://www.mbzirc.com/.
  3. F. Ferreira, N. Kraševac, J. Obradović, R. Milijaš, I. Lončar, S. Bogdan, and N. Misković, “LIDAR-based USV close approach to vessels for manipulation purposes,” in OCEANS 2022 - MTS/IEEE Hampton Roads, 2022. accepted for publication.
  4. F. Zorić, M. Križmančić, I. Vatavuk, and M. Orsag, “Intermittent remote visual servoing in a heterogeneous robotic team,” in European Control Confrence 2023 - ECC23, 2023. submitted for review.
  5. S. P. Yeong, L. M. King, and S. S. Dol, “A review on marine search and rescue operations using unmanned aerial vehicles,” 2015.
  6. R. W. Beard and T. W. McLain, “Small unmanned aircraft,” Princeton University Press, 2012.
  7. Y. Sun, J. Ling, X. Chen, F. Kong, Q. Hu, and S. A. Biancardo, “Exploring maritime search and rescue resource allocation via an enhanced particle swarm optimization method,” Journal of Marine Science and Engineering, vol. 10, no. 7, p. 906, 2022.
  8. S. W. Cho, H. J. Park, H. Lee, D. H. Shim, and S.-Y. Kim, “Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations,” Computers & Industrial Engineering, vol. 161, p. 107612, 2021.
  9. D. A. OTOTE, B. Li, B. Ai, S. Gao, J. Xu, X. Chen, and G. Lv, “A decision-making algorithm for maritime search and rescue plan,” Sustainability, vol. 11, no. 7, p. 2084, 2019.
  10. P. Sujit, S. Saripalli, and J. B. Sousa, “Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless,” IEEE Control Systems Magazine, vol. 34, no. 1, pp. 42–59, 2014.
  11. T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr., “Survey on coverage path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.
  12. H. L. Andersen, “Path planning for search and rescue mission using multicopters,” 2014.
  13. J. Wood and J. K. Hedrick, “Space partitioning and classification for multi-target search and tracking by heterogeneous unmanned aerial system teams,” in Infotech@Aerospace 2011, American Institute of Aeronautics and Astronautics, 2011.
  14. A. Panico, L. Z. Fragonara, and S. Al-Rubaye, “Adaptive detection tracking system for autonomous uav maritime patrolling,” in 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 539–544, 2020.
  15. C. Sabo, D. Kingston, and K. Cohen, “A formulation and heuristic approach to task allocation and routing of UAVs under limited communication,” Unmanned Systems, vol. 02, no. 01, pp. 1–17, 2014.
  16. R. Milijaš, L. Marković, A. Ivanović, F. Petric, and S. Bogdan, “A comparison of LiDAR-based SLAM systems for control of unmanned aerial vehicles,” in International Conference on Unmanned Aircraft Systems (ICUAS), 2021.
  17. P. J. F. Groenen and M. van de Velden, “Multidimensional Scaling by Majorization: A Review,” J. Stat. Soft., vol. 73, no. 8, 2016. 11 citations (Crossref) [2022-09-02].
  18. J. Zhang, Ângelo P. Teixeira, C. Guedes Soares, and X. Yan, “Probabilistic modelling of the drifting trajectory of an object under the effect of wind and current for maritime search and rescue,” Ocean Engineering, vol. 129, pp. 253–264, 2017.
  19. K. Patel, C. Bhatt, and P. L. Mazzeo, “Deep learning-based automatic detection of ships: an experimental study using satellite images,” Journal of imaging, vol. 8, no. 7, p. 182, 2022.
  20. K. Kim, S. Hong, B. Choi, and E. Kim, “Probabilistic ship detection and classification using deep learning,” Applied Sciences, vol. 8, no. 6, p. 936, 2018.
  21. Z. Shao, W. Wu, Z. Wang, W. Du, and C. Li, “Seaships: A large-scale precisely annotated dataset for ship detection,” IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2593–2604, 2018.
  22. Y. Zheng and S. Zhang, “Mcships: A large-scale ship dataset for detection and fine-grained categorization in the wild,” in 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, IEEE, 2020.
  23. I. Lončar, J. Obradović, N. Kraševac, L. Mandić, I. Kvasić, F. Ferreira, V. Slošić, Đ. Nađ, and N. Mišković, “Marus - a marine robotics simulator,” in OCEANS 2022, Hampton Roads, pp. 1–7, 2022.
  24. B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” CoRR, vol. abs/1511.05547, 2015.
  25. “Ultralytics, yolov5.” https://github.com/ultralytics/yolov5, 2020.
  26. T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick, “Microsoft COCO: common objects in context,” CoRR, vol. abs/1405.0312, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.