Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

What is \textit{Quantum} in Probabilistic Explanations of the Sure Thing Principle Violation? (2306.11947v1)

Published 21 Jun 2023 in quant-ph

Abstract: The Prisoner's Dilemma game (PDG) is one of the simple test-beds for the probabilistic nature of the human decision-making process. Behavioral experiments have been conducted on this game for decades and show a violation of the so-called \textit{sure thing principle}, a key principle in the rational theory of decision. Quantum probabilistic models can explain this violation as a second-order interference effect, which cannot be accounted for by classical probability theory. Here, we adopt the framework of generalized probabilistic theories and approach this explanation from the viewpoint of quantum information theory to identify the source of the interference. In particular, we reformulate one of the existing quantum probabilistic models using density matrix formalism and consider different amounts of classical and quantum uncertainties for one player's prediction about another player's action in PDG. This enables us to demonstrate that what makes possible the explanation of the violation is the presence of \textit{quantum coherence} in the player's initial prediction and its conversion to probabilities during the dynamics. Moreover, we discuss the role of other quantum information-theoretical quantities, such as quantum entanglement, in the decision-making process. Finally, we propose a three-choice extension of the PDG to compare the predictive powers of quantum probability theory and a more general probabilistic theory that includes it as a particular case and exhibits third-order interference.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
  2. L. Hardy, “Quantum theory from five reasonable axioms” (2001), arXiv:quant-ph/0101012 .
  3. J. Barrett, Phys. Rev. A 75, 032304 (2007).
  4. T. Paterek, B. Dakić, and Č Brukner, New J. Phys. 12, 053037 (2010).
  5. M. P. Müller, SciPost Phys. Lect. Notes , 28 (2021).
  6. S. Popescu, Nature Phys. 10, 264 (2014).
  7. J. S. Bell, Physics Physique Fizika 1, 195 (1964).
  8. B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
  9. B. S. Tsirel’son, J. Math. Sci. 36, 557 (1987).
  10. L. A. Khalfin and B. S. Tsirelson, Found. Phys. 22, 879 (1992).
  11. L. Masanes and M. P. Müller, New J. Phys. 13, 063001 (2011).
  12. J. Rau, Found Phys. 41, 380 (2011).
  13. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 84, 012311 (2011).
  14. J. Savage, Naval Research Logistics Quarterly 1, 236 (1954).
  15. J. Pearl, J. Causal Inference 4, 81 (2016).
  16. A. Tversky and D. Kahneman, Science 185, 1124 (1974).
  17. A. Tversky and E. Shafir, Psychol. Sci. 3, 305 (1992).
  18. E. Shafir and A. Tversky, Cogn. Psychol. 24, 449 (1992).
  19. R. T. Croson, Organ. Behav. Hum. Decis. Process. 80, 118 (1999).
  20. S. Li and J. Taplin, Chinese J. Psychol. 44, 25–46 (2002).
  21. J. R. Busemeyer, Z. Wang, and J. T. Townsend, J. Math. Psychol. 50, 220 (2006), special Issue: Jean-Claude Falmagne: Part II.
  22. E. M. Pothos and J. R. Busemeyer, Proc. R. Soc. B 276, 2171 (2009).
  23. A. Y. Khrennikov and E. Haven, J. Math. Psychol. 53, 378 (2009), special Issue: Quantum Cognition.
  24. J. Tesař, Decision 7, 43 (2020).
  25. E. M. Pothos and J. R. Busemeyer, Annu. Rev. Psychol. 73, 749 (2022).
  26. Z. Wang and J. R. Busemeyer, Top. Cogn. Sci. 5, 689 (2013).
  27. D. Aerts, L. Gabora, and S. Sozzo, Top. Cogn. Sci. 5, 737 (2013).
  28. J. M. Yearsley and J. R. Busemeyer, J. Math. Psychol. 74, 99 (2016).
  29. J. Busemeyer and Z. Wang, PLoS One 8, 12 (2017).
  30. I. Basieva, A. Khrennikov, and M. Ozawa, Biosystems 201, 104328 (2021).
  31. J. v. Neumann, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 273 (1927).
  32. C. E. Shannon, Bell Labs Tech. J. 27, 379 (1948a).
  33. C. E. Shannon, Bell Labs Tech. J. 27, 623 (1948b).
  34. B. Schumacher, Phys. Rev. A 51, 2738 (1995).
  35. T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).
  36. S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997).
  37. R. D. Sorkin, Mod. Phys. Lett. A 9, 3119 (1994).
  38. B. Dakić, T. Paterek, and Č. Brukner, New J. Phys. 16, 023028 (2014).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com