Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards a robust and reliable deep learning approach for detection of compact binary mergers in gravitational wave data

Published 20 Jun 2023 in gr-qc, astro-ph.HE, and cs.LG | (2306.11797v2)

Abstract: The ability of deep learning (DL) approaches to learn generalised signal and noise models, coupled with their fast inference on GPUs, holds great promise for enhancing gravitational-wave (GW) searches in terms of speed, parameter space coverage, and search sensitivity. However, the opaque nature of DL models severely harms their reliability. In this work, we meticulously develop a DL model stage-wise and work towards improving its robustness and reliability. First, we address the problems in maintaining the purity of training data by deriving a new metric that better reflects the visual strength of the 'chirp' signal features in the data. Using a reduced, smooth representation obtained through a variational auto-encoder (VAE), we build a classifier to search for compact binary coalescence (CBC) signals. Our tests on real LIGO data show an impressive performance of the model. However, upon probing the robustness of the model through adversarial attacks, its simple failure modes were identified, underlining how such models can still be highly fragile. As a first step towards bringing robustness, we retrain the model in a novel framework involving a generative adversarial network (GAN). Over the course of training, the model learns to eliminate the primary modes of failure identified by the adversaries. Although absolute robustness is practically impossible to achieve, we demonstrate some fundamental improvements earned through such training, like sparseness and reduced degeneracy in the extracted features at different layers inside the model. We show that these gains are achieved at practically zero loss in terms of model performance on real LIGO data before and after GAN training. Through a direct search on 8.8 days of LIGO data, we recover two significant CBC events from GWTC-2.1, GW190519_153544 and GW190521_074359. We also report the search sensitivity obtained from an injection study.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.