Causal survival embeddings: non-parametric counterfactual inference under censoring (2306.11704v1)
Abstract: Model-free time-to-event regression under confounding presents challenges due to biases introduced by causal and censoring sampling mechanisms. This phenomenology poses problems for classical non-parametric estimators like Beran's or the k-nearest neighbours algorithm. In this study, we propose a natural framework that leverages the structure of reproducing kernel Hilbert spaces (RKHS) and, specifically, the concept of kernel mean embedding to address these limitations. Our framework has the potential to enable statistical counterfactual modeling, including counterfactual prediction and hypothesis testing, under right-censoring schemes. Through simulations and an application to the SPRINT trial, we demonstrate the practical effectiveness of our method, yielding coherent results when compared to parallel analyses in existing literature. We also provide a theoretical analysis of our estimator through an RKHS-valued empirical process. Our approach offers a novel tool for performing counterfactual survival estimation in observational studies with incomplete information. It can also be complemented by state-of-the-art algorithms based on semi-parametric and parametric models.
- Survival and event history analysis: a process point of view. Springer Science & Business Media.
- Does cox analysis of a randomized survival study yield a causal treatment effect? Lifetime data analysis 21(4), 579–593.
- Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97(457), 284–292.
- Statistical models based on counting processes. Springer Science & Business Media.
- Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical society 68(3), 337–404.
- Baker, C. R. (1973). Joint measures and cross-covariance operators. Transactions of the American Mathematical Society 186, 273–289.
- Influence of baseline diastolic blood pressure on effects of intensive compared with standard blood pressure control. Circulation 137(2), 134–143.
- Doubly robust nonparametric inference on the average treatment effect. Biometrika 104(4), 863–880.
- Reproducing kernel Hilbert spaces in probability and statistics. Springer Science & Business Media.
- Efficient and adaptive estimation for semiparametric models, Volume 4. Springer.
- Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates. The Journal of Human Resources 8(4), 436–455.
- Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ontarget and transcend trials. The Lancet 389(10085), 2226–2237.
- Crossing survival curves: alternatives to the log-rank test. Trials 12(1), A137.
- Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem. Analysis and Applications 4(04), 377–408.
- Inference on counterfactual distributions. Econometrica 81(6), 2205–2268.
- Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review. Bmj 341.
- Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2), 187–202.
- Dinculeanu, N. (2000). Vector integration and stochastic integration in Banach spaces. John Wiley & Sons.
- Causal inference. Statistical Science 33(2), 214–237.
- A kernel log-rank test of independence for right-censored data. Journal of the American Statistical Association 0(0), 1–12.
- Fleming, T. R. and D. P. Harrington (2011). Counting processes and survival analysis. John Wiley & Sons.
- Does low diastolic blood pressure contribute to the risk of recurrent hypertensive cardiovascular disease events? the framingham heart study. Hypertension 65(2), 299–305.
- Statistical consistency of kernel canonical correlation analysis. Journal of Machine Learning Research 8(14), 361–383.
- Kernel bayes’ rule: Bayesian inference with positive definite kernels. Journal of Machine Learning Research 14(118), 3753–3783.
- The kaplan-meier integral in the presence of covariates: A review. From Statistics to Mathematical Finance: Festschrift in Honour of Winfried Stute, 25–41.
- Gill, R. D. (1980). Censoring and stochastic integrals. Statistica Neerlandica 34(2), 124–124.
- Asymptotic properties of a generalized kaplan-meier estimator with some applications. Communications in Statistics-Theory and Methods 4(1), 65–78.
- A kernel two-sample test. The Journal of Machine Learning Research 13(1), 723–773.
- Conditional mean embeddings as regressors. In Proceedings of the 29th International Coference on International Conference on Machine Learning, ICML’12, Madison, WI, USA, pp. 1803–1810. Omnipress.
- Hernán, M. A. (2010). The hazards of hazard ratios. Epidemiology (Cambridge, Mass.) 21(1), 13.
- Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and statistics 86(1), 4–29.
- Imbens, G. W. and D. B. Rubin (1997). Estimating outcome distributions for compliers in instrumental variables models. The Review of Economic Studies 64(4), 555–574.
- Nonparametric estimation from incomplete observations. Journal of the American statistical association 53(282), 457–481.
- Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. Springer.
- Laan, M. J. and J. M. Robins (2003). Unified methods for censored longitudinal data and causality. Springer.
- Probability in Banach Spaces: isoperimetry and processes, Volume 23. Springer Science & Business Media.
- Improving propensity score weighting using machine learning. Statistics in medicine 29(3), 337–346.
- Diastolic hypotension may attenuate benefits from intensive systolic targets: secondary analysis of a randomized controlled trial. The American journal of medicine 131(10), 1228–1233.
- Martinussen, T. (2022). Causality and the cox regression model. Annual Review of Statistics and Its Application 9, 249–259.
- Kernel machine learning methods to handle missing responses with complex predictors. application in modelling five-year glucose changes using distributional representations. Comput. Methods Programs Biomed. 221(106905), 106905.
- Hypothesis testing for matched pairs with missing data by maximum mean discrepancy: An application to continuous glucose monitoring. The American Statistician 0(0), 1–13.
- Matabuena, M. and O. H. M. Padilla (2019). Energy distance and kernel mean embeddings for two-sample survival testing. arXiv preprint arXiv:1912.04160.
- Kernel biclustering algorithm in hilbert spaces. arXiv preprint arXiv:2208.03675.
- Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Annals of internal medicine 144(12), 884–893.
- On learning vector-valued functions. Neural computation 17(1), 177–204.
- Kernel mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine Learning 10(1-2), 1–141.
- Counterfactual mean embeddings. Journal of Machine Learning Research 22(162), 1–71.
- Neyman, J. (1923). Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (in polish). english translation by dm dabrowska and tp speed (1990). Statistical Science 5, 465–480.
- Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review 14(3), 693–709.
- On the estimation of average treatment effects with right-censored time to event outcome and competing risks. Biometrical Journal 62(3), 751–763.
- A measure-theoretic approach to kernel conditional mean embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.), Advances in Neural Information Processing Systems, Volume 33, pp. 21247–21259. Curran Associates, Inc.
- Pearl, J. et al. (2000). Models, reasoning and inference. Cambridge, UK: Cambridge University Press 19(2).
- Perlman, M. D. (1974). Jensen’s inequality for a convex vector-valued function on an infinite-dimensional space. Journal of Multivariate Analysis 4(1), 52–65.
- A kernel-and optimal transport-based test of independence between covariates and right-censored lifetimes. The International Journal of Biostatistics 17(2), 331–348.
- Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical modelling 7(9-12), 1393–1512.
- Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55.
- Rubin, D. and M. J. van der Laan (2007). A doubly robust censoring unbiased transformation. The international journal of biostatistics 3(1).
- Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology 66(5), 688.
- Hilbert space embeddings of conditional distributions with applications to dynamical systems. In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 961–968.
- Support vector machines. Springer Science & Business Media.
- Limitations of hazard ratios in clinical trials. European Heart Journal 40(17), 1378–1383.
- Diastolic hypotension due to intensive blood pressure therapy: Is it harmful? Atherosclerosis 265, 29–34.
- How do we analyze effects of low diastolic blood pressure? The American Journal of Medicine 132(1), e23.
- Stute, W. (1993). Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45(1), 89–103.
- Stute, W. (1996a). Distributional convergence under random censorship when covariables are present. Scandinavian journal of statistics, 461–471.
- Stute, W. (1996b). Distributional convergence under random censorship when covariables are present. Scandinavian journal of statistics, 461–471.
- Suzukawa, A. (2004). Unbiased estimation of functionals under random censorship. Journal of the Japan Statistical Society 34(2), 153–172.
- Tamás, A. and B. C. Csáji (2023). Recursive estimation of conditional kernel mean embeddings. arXiv preprint arXiv:2302.05955.
- The-SPRINT-Research-Group (2015). A randomized trial of intensive versus standard blood-pressure control. New England Journal of Medicine 373(22), 2103–2116. PMID: 26551272.
- Tsiatis, A. A. (2006). Semiparametric theory and missing data.
- Van der Vaart, A. W. (2000). Asymptotic statistics, Volume 3. Cambridge university press.
- Statistical depth meets machine learning: Kernel mean embeddings and depth in functional data analysis. arXiv preprint arXiv:2105.12778.
- Rkhs-based covariate balancing for survival causal effect estimation. Lifetime Data Analysis.
- Statistical inference after adaptive sampling for longitudinal data.
- Zubizarreta, J. R. (2012). Using mixed integer programming for matching in an observational study of kidney failure after surgery. Journal of the American Statistical Association 107(500), 1360–1371.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.