Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Metal-insulator transition and magnetism of SU(3) fermions in the square lattice (2306.10644v2)

Published 18 Jun 2023 in cond-mat.quant-gas, cond-mat.str-el, physics.atom-ph, and quant-ph

Abstract: We study the SU(3) symmetric Fermi-Hubbard model (FHM) in the square lattice at $1/3$-filling using numerically exact determinant quantum Monte Carlo (DQMC) and numerical linked-cluster expansion (NLCE) techniques. We present the different regimes of the model in the $T-U$ plane, which are characterized by local and short-range correlations, and capture signatures of the metal-insulator transition and magnetic crossovers. These signatures are detected as the temperature scales characterizing the rise of the compressibility, and an interaction-dependent change in the sign of the diagonal spin-spin correlation function. The analysis of the compressibility estimates the location of the metal-insulator quantum critical point at $U_c/t \sim 6$, and provides a temperature scale for observing Mott physics at finite-$T$. Furthermore, from the analysis of the spin-spin correlation function we observe that for $U/t \gtrsim6$ and $T \sim J = 4t2/U$ there is a development of a short-range two sublattice (2-SL) antiferromagnetic structure, as well as an emerging three sublattice (3-SL) antiferromagnetic structure as the temperature is lowered below $T/J \lesssim 0.57$. This crossover from 2-SL to 3-SL magnetic ordering agrees with Heisenberg limit predictions, and has observable effects on the density of on-site pairs. Finally, we describe how the features of the regimes in the $T$-$U$ plane can be explored with alkaline-earth-like atoms in optical lattices with currently-achieved experimental techniques and temperatures. The results discussed in this manuscript provide a starting point for the exploration of the SU(3) FHM upon doping.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Y. Tokura, Orbital Physics in Transition-Metal Oxides, Science 288, 462 (2000).
  2. M. Hermele, V. Gurarie, and A. M. Rey, Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid, Phys. Rev. Lett. 103, 135301 (2009).
  3. M. Hermele and V. Gurarie, Topological liquids and valence cluster states in two-dimensional SU(N)𝑁(N)( italic_N ) magnets, Phys. Rev. B 84, 174441 (2011).
  4. P. Nataf and F. Mila, Exact Diagonalization of Heisenberg SU(N𝑁Nitalic_N) Models, Phys. Rev. Lett. 113, 127204 (2014).
  5. C. Wu, Hidden Symmetry and Quantum Phases in Spin-3/2 Cold Atomic Systems, Mod. Phys. Lett. B 20, 1707 (2006).
  6. M. A. Cazalilla, A. F. Ho, and M. Ueda, Ultracold gases of ytterbium: Ferromagnetism and Mott states in an SU(6) Fermi system, New J. Phys. 11, 103033 (2009).
  7. M. A. Cazalilla and A. M. Rey, Ultracold Fermi gases with emergent SU(N𝑁Nitalic_N) symmetry, Rep. Prog. Phys. 77, 124401 (2014).
  8. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  9. I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012).
  10. A. Sotnikov, Critical entropies and magnetic-phase-diagram analysis of ultracold three-component fermionic mixtures in optical lattices, Phys. Rev. A 92, 023633 (2015).
  11. A. Sotnikov and W. Hofstetter, Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices, Phys. Rev. A 89, 063601 (2014).
  12. H. Yanatori and A. Koga, Finite-temperature phase transitions in the SU(N)𝑁({N})( italic_N ) Hubbard model, Phys. Rev. B 94, 041110(R) (2016).
  13. W. Nie, D. Zhang, and W. Zhang, Ferromagnetic ground state of the SU(3) Hubbard model on the Lieb lattice, Phys. Rev. A 96, 053616 (2017).
  14. M. Hafez-Torbati and W. Hofstetter, Artificial SU(3) spin-orbit coupling and exotic Mott insulators, Phys. Rev. B 98, 245131 (2018).
  15. M. Hafez-Torbati and W. Hofstetter, Competing charge and magnetic order in fermionic multicomponent systems, Phys. Rev. B 100, 035133 (2019).
  16. A. Pérez-Romero, R. Franco, and J. Silva-Valencia, Phase diagram of the SU(3) Fermi Hubbard model with next-neighbor interactions, Euro Phys J B 94, 229 (2021).
  17. C. Honerkamp and W. Hofstetter, Ultracold fermions and the SU(N𝑁Nitalic_N) Hubbard Model, Phys. Rev. Lett. 92, 170403 (2004).
  18. C. Romen and A. M. Läuchli, Structure of spin correlations in high-temperature SU(N𝑁Nitalic_N) quantum magnets, Phys. Rev. Research 2, 043009 (2020).
  19. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems. I, Phys. Rev. D 24, 2278 (1981).
  20. M. Rigol, T. Bryant, and R. R. P. Singh, Numerical linked-cluster approach to quantum lattice models, Phys. Rev. Lett. 97, 187202 (2006).
  21. B. Tang, E. Khatami, and M. Rigol, A short introduction to numerical linked-cluster expansions, Computer Physics Communications 184, 557 (2013).
  22. The Manhattan distance between two points is the sum of the absolute differences of their Cartesian coordinates.
  23. R. T. Scalettar, R. M. Noack, and R. R. P. Singh, Ergodicity at large couplings with the determinant Monte Carlo algorithm, Phys. Rev. B 44, 10502 (1991).
  24. J. Kokalj and R. H. McKenzie, Thermodynamics of a bad metal–Mott insulator transition in the presence of frustration, Phys. Rev. Lett. 110, 206402 (2013).
  25. Q. Zhou and T.-L. Ho, Universal thermometry for quantum simulation, Phys. Rev. Lett. 106, 225301 (2011).
  26. F. Grusdt, A. Bohrdt, and E. Demler, Microscopic spinon-chargon theory of magnetic polarons in the t−J𝑡𝐽t\text{$-$}{J}italic_t - italic_J model, Phys. Rev. B 99, 224422 (2019).
  27. A. Bohrdt, F. Grusdt, and M. Knap, Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet, New J. Phys. 22, 123023 (2021a).
  28. F. Grusdt, E. Demler, and A. Bohrdt, Pairing of holes by confining strings in antiferromagnets, SciPost Phys. 14, 090 (2023).
  29. S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Sci. Rep. 2, 992 (2012).
  30. F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X 3, 031010 (2013).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube