Nonlinearities in Black Hole Ringdowns and the Quantization of Gravity
Abstract: Einstein's theory of gravity admits a low energy effective quantum field description from which predictions beyond classical general relativity can be drawn. As gravitational wave detectors improve, one may ask whether non-classical features of such theory can be experimentally verified. Here we argue that nonlinear effects in black hole ringdowns can be sensitive to the graviton number statistics and other quantum properties of gravitational wave states. The prediction of ringdown signals, potentially measurable in the near future, might require the inclusion of quantum effects. This offers a new route to probing the quantum nature of gravity and gravitational wave entanglement.
- F. Dyson, Is a graviton detectable?, in XVIIth International Congress on Mathematical Physics (World Scientific, 2014) pp. 670–682.
- R. Penrose, On gravity’s role in quantum state reduction, General relativity and gravitation 28, 581 (1996).
- J. D. Bekenstein, Black holes and entropy, Physical Review D 7, 2333 (1973).
- T. Jacobson, Thermodynamics of spacetime: the einstein equation of state, Physical Review Letters 75, 1260 (1995).
- T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Reports on Progress in Physics 73, 046901 (2010).
- E. Verlinde, On the origin of gravity and the laws of newton, Journal of High Energy Physics 2011, 1 (2011).
- M. Aspelmeyer, How to avoid the appearance of a classical world in gravity experiments, arXiv preprint arXiv:2203.05587 (2022).
- L. M. Krauss and F. Wilczek, Using cosmology to establish the quantization of gravity, Physical Review D 89, 047501 (2014).
- C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Physical review letters 119, 240402 (2017).
- T. Guerreiro, Quantum effects in gravity waves, Classical and Quantum Gravity 37, 155001 (2020).
- M. Parikh, F. Wilczek, and G. Zahariade, Quantum mechanics of gravitational waves, Physical Review Letters 127, 081602 (2021a).
- M. Parikh, F. Wilczek, and G. Zahariade, Signatures of the quantization of gravity at gravitational wave detectors, Physical Review D 104, 046021 (2021b).
- M. Hillery, Conservation laws and nonclassical states in nonlinear optical systems, Physical Review A 31, 338 (1985).
- Note free evolution of the field and eventual quantum jump operators corresponding to decay also contribute to the dynamics.
- L. Mandel, Squeezing and photon antibunching in harmonic generation, Optics Communications 42, 437 (1982).
- C. Goebel, Comments on the” vibrations” of a black hole., The Astrophysical Journal 172, L95 (1972).
- M. Maggiore, Physical interpretation of the spectrum of black hole quasinormal modes, Physical Review Letters 100, 141301 (2008).
- H. Yang, A. Zimmerman, and L. Lehner, Turbulent black holes, Physical review letters 114, 081101 (2015).
- R. Sawyer, Quantum break in high intensity gravitational wave interactions, Physical Review Letters 124, 101301 (2020).
- For a discussion on the canonical quantization of gravitational perturbations of a Kerr black hole see also [69].
- A. Ekert and K. Rzazewski, Second harmonic generation and statistical properties of light, Optics communications 65, 225 (1988).
- M. Kozierowski and R. Tanaś, Quantum fluctuations in second-harmonic light generation, Optics Communications 21, 229 (1977).
- M. Olsen, L. Plimak, and A. Khoury, Dynamical quantum statistical effects in optical parametric processes, Optics communications 201, 373 (2002).
- L. Davidovich, Sub-poissonian processes in quantum optics, Reviews of Modern Physics 68, 127 (1996).
- I acknowledge A. Z. Khoury for pointing me this argument.
- :𝒪::𝒪::\mathrel{\mathcal{O}}:: caligraphic_O : denotes normal ordering.
- S. Chawla and M. Parikh, Quantum gravity corrections to the fall of an apple, Physical Review D 107, 066024 (2023).
- S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).
- S. Kanno and J. Soda, Detecting nonclassical primordial gravitational waves with hanbury-brown–twiss interferometry, Physical Review D 99, 084010 (2019).
- M. Olsen, Continuous-variable einstein-podolsky-rosen paradox with traveling-wave second-harmonic generation, Physical Review A 70, 035801 (2004).
- This is arguably a simplification, but it captures the essence of a GW detector and notice that it can be formally mapped into a Michelson interferometer such as LIGO; see [70].
- B. Pang and Y. Chen, Quantum interactions between a laser interferometer and gravitational waves, Physical Review D 98, 124006 (2018).
- When choosing sampling times, care must be taken to avoid the effects of aliasing.
- I. B. Zeldovich and I. D. Novikov, Relativistic astrophysics. vol. 2: The structure and evolution of the universe, Chicago: University of Chicago Press (1983).
- The inspiral phase is well described by classical numerical predictions, which are expected to match the case of coherent states in effective field theory [12].
- X. Zou and L. Mandel, Photon-antibunching and sub-poissonian photon statistics, Physical Review A 41, 475 (1990).
- Rαβγδ;μμ=2RαβξμRδγξμ+2RαξδμRβγξμ−2RαξγμRβδξμsuperscriptsubscript𝑅𝛼𝛽𝛾𝛿𝜇𝜇2subscript𝑅𝛼𝛽𝜉𝜇superscriptsubscript𝑅𝛿𝛾𝜉𝜇2subscript𝑅𝛼𝜉𝛿𝜇superscriptsubscript𝑅𝛽𝛾𝜉𝜇2subscript𝑅𝛼𝜉𝛾𝜇superscriptsubscript𝑅𝛽𝛿𝜉𝜇R_{\alpha\beta\gamma\delta;\mu}^{\ \ \ \ \ \ \ \mu}=2R_{\alpha\beta\xi\mu}R_{% \delta\ \ \gamma\ }^{\ \ \xi\ \ \mu}+2R_{\alpha\xi\delta\mu}R_{\beta\ \ \gamma% \ }^{\ \ \xi\ \ \mu}-2R_{\alpha\xi\gamma\mu}R_{\beta\ \ \delta\ }^{\ \ \xi\ \ \mu}italic_R start_POSTSUBSCRIPT italic_α italic_β italic_γ italic_δ ; italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = 2 italic_R start_POSTSUBSCRIPT italic_α italic_β italic_ξ italic_μ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_δ italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ξ italic_μ end_POSTSUPERSCRIPT + 2 italic_R start_POSTSUBSCRIPT italic_α italic_ξ italic_δ italic_μ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_β italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ξ italic_μ end_POSTSUPERSCRIPT - 2 italic_R start_POSTSUBSCRIPT italic_α italic_ξ italic_γ italic_μ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_β italic_δ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ξ italic_μ end_POSTSUPERSCRIPT.
- D. R. Brill and J. B. Hartle, Method of the self-consistent field in general relativity and its application to the gravitational geon, Physical Review 135, B271 (1964).
- A. Zee, Quantum field theory in a nutshell, Vol. 7 (Princeton university press, 2010).
- L. Grishchuk and Y. V. Sidorov, Squeezed quantum states of relic gravitons and primordial density fluctuations, Physical Review D 42, 3413 (1990).
- B. Allen, Stochastic gravity-wave background in inflationary-universe models, Physical Review D 37, 2078 (1988).
- P. Candelas, P. Chrzanowski, and K. Howard, Quantization of electromagnetic and gravitational perturbations of a kerr black hole, Physical Review D 24, 297 (1981).
- R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Progress in Optics 60, 345 (2015).
- M. Blencowe, Effective field theory approach to gravitationally induced decoherence, Physical review letters 111, 021302 (2013).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.