Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Two dark matter candidates in a doublet-triplet Higgs model (2306.09617v3)

Published 16 Jun 2023 in hep-ph

Abstract: We study a Standard Model extension that provides a bicomponent dark matter scenario as well as a mechanism for the generation of left-handed neutrino masses. We extend the Standard Model scalar sector by adding an inert $SU(2)_L$ doublet with hypercharge $Y= 1/2$ and a triplet with hypercharge $Y=0$. These scalars provide dark matter candidates in two dark sectors stabilised by discrete symmetries. We consider the contribution of both candidates to the total relic abundance in order to recover the desert regions in their standard alone cases. In addition, we add an active scalar $SU(2)_L$ triplet with hypercharge $Y=1$ in order to generate light neutrino masses. We analyse the results of dark matter phenomenology for the model and the neutrino mass generation through the type-II seesaw mechanism.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Salam, J.C.W.: Electromagnetic and weak interactions. Phys. Lett. 13(2), 168–171 (1964) Weinberg [1967] Weinberg, S.: A Model of Leptons. Phys. Rev. Lett. 19(21), 1264 (1967) et al. (Super Kamiokande Collaboration) [1998] (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Weinberg, S.: A Model of Leptons. Phys. Rev. Lett. 19(21), 1264 (1967) et al. (Super Kamiokande Collaboration) [1998] (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  2. Weinberg, S.: A Model of Leptons. Phys. Rev. Lett. 19(21), 1264 (1967) et al. (Super Kamiokande Collaboration) [1998] (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  3. (Super Kamiokande Collaboration), Y.F.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81(8), 1562 (1998) V.C. Rubin [1970] V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  4. V.C. Rubin, W.K.F.J.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970) et al. (PANDA Collaboration) [2017] (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  5. (PANDA Collaboration), X.C.: Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 119(18), 181302 (2017) et al. (LUX-ZEPLIN Collaboration) [2023] (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  6. (LUX-ZEPLIN Collaboration), J.A.: First Dark Matter Search Results from the LUX-ZEPLIN(LZ) Experiment. Phys. Rev. Lett. 131(4), 041002 (2023) Aprile [2023] Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  7. Aprile, E.e.a.: First dark matter search with nuclear recoils from the xenonnt experiment. Phys. Rev. Lett. 131, 041003 (2023) https://doi.org/10.1103/PhysRevLett.131.041003 Taoso et al. [2008] Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  8. Taoso, M., Bertone, G., Masiero, A.: Dark Matter Candidates: A Ten-Point Test. JCAP 03, 022 (2008) https://doi.org/10.1088/1475-7516/2008/03/022 arXiv:0711.4996 [astro-ph] L. L. Honorez [2010] L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  9. L. L. Honorez, C.E.Y.: The inert doublet model of dark matter revisited. High Energ. Phys. 46(9) (2010) M. Krawczyk [2015] M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  10. M. Krawczyk, D.S. N. Darvishi: The Inert Doublet Model and its extensions. arXiv:1512.06437v2 [hep-ph] (2015) M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha [2020] M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  11. M. A. Arroyo-Ureña, R. Gaitán, R. Martinez, J.H. Montes de Oca Yemha: Dark matter in inert doublet model with one scalar singlet and Ux⁢(1)subscript𝑈𝑥1U_{x}(1)italic_U start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 1 ) gauge symmetry. Eur. Phys. J. C 80(8), 788 (2020) Kalinowski et al. [2020] Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  12. Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Żarnecki, A.F.: The inert doublet model at current and future colliders. J. Phys.: Conf. Ser. 1586(1), 012023 (2020) https://doi.org/10.1088/1742-6596/1586/1/012023 Ma [2006] Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  13. Ma, E.: Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006) https://doi.org/10.1103/PhysRevD.73.077301 Fischer and van der Bij [2011] Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  14. Fischer, O., Bij, J.J.: Multi-singlet and singlet-triplet scalar dark matter. Mod. Phys. Lett. 26(27), 2039–2049 (2011) Araki et al. [2011] Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  15. Araki, T., Geng, C.Q., Nagao, K.I.: Dark matter in inert triplet models. Phys. Rev. D 83, 075014 (2011) https://doi.org/10.1103/PhysRevD.83.075014 Khan [2018] Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  16. Khan, N.: Exploring the hyperchargeless Higgs triplet model up to the Planck scale. Eur. Phys. J. C 78(4), 341 (2018) https://doi.org/10.1140/epjc/s10052-018-5766-4 arXiv:1610.03178 [hep-ph] Chakrabarty et al. [2022] Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  17. Chakrabarty, N., Roshan, R., Sil, A.: Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Phys. Rev. D 105, 115010 (2022) https://doi.org/10.1103/PhysRevD.105.115010 Betancur et al. [2022] Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  18. Betancur, A., Castillo, A., Palacio, G., Suarez, J.: Multicomponent scalar dark matter at high-intensity proton beam experiments. Journal of Physics G: Nuclear and Particle Physics 49(7), 075003 (2022) https://doi.org/10.1088/1361-6471/ac65a6 et al. (CMS Collaboration) [2012] (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  19. (CMS Collaboration), S.C.: Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B 716(1), 30–61 (2012) https://doi.org/10.1016/j.physletb.2012.08.021 Cirelli and Strumia [2009] Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  20. Cirelli, M., Strumia, A.: Minimal dark matter: models and results. New J. Phys. 11, 105005 (2009) Mohapatra [2005] Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  21. Mohapatra, R.N.: Neutrino mass - an overview. Nucl. Phys. B - Proceedings Supplements 138, 257–266 (2005) https://doi.org/10.1016/j.nuclphysbps.2004.11.061 . Proceedings of the Eighth International Workshop on Topics in Astroparticle and Undeground Physics Datta et al. [2022] Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  22. Datta, A., Roshan, R., Sil, A.: Scalar triplet flavor leptogenesis with dark matter. Phys. Rev. D 105, 095032 (2022) https://doi.org/10.1103/PhysRevD.105.095032 et al. (Particle Data Group) [2022] (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  23. (Particle Data Group), R.W.: Review of Particle Physics. Prog. of Theor. Exp. Phys. 2022(8) (2022) https://doi.org/10.1093/ptep/ptac097 https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf. 083C01 et al. (Planck Collaboration) [2020] (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  24. (Planck Collaboration), N.A.: Planck 2018 results. A&A 641(A6), 67 (2020) Lundström et al. [2009] Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  25. Lundström, E., Gustafsson, M., Edsjö, J.: Inert doublet model and lep ii limits. Phys. Rev. D 79, 035013 (2009) https://doi.org/10.1103/PhysRevD.79.035013 M. Krawczyk and Świezewska [2013] M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  26. M. Krawczyk, P.S. D. Sokolowska, Świezewska, B.: Constraining inert dark matter by rγ⁢γsubscript𝑟𝛾𝛾r_{\gamma\gamma}italic_r start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT and wmap data. JHEP 2013(9), 55 (2013) OPAL Collaboration [2004] OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  27. OPAL Collaboration, G.A.e.a.: Search for chargino and neutralino production at s=192𝑠192\sqrt{s}=192square-root start_ARG italic_s end_ARG = 192 GeV to 209209209209 GeV at LEP. Eur. Phys. J. C 35(1), 1–20 (2004) Pierce and Thaler [2007] Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  28. Pierce, A., Thaler, J.: Natural dark matter from an unnatural higgs boson and new colored particles at the tev scale. JHEP 2007(08), 026 (2007) https://doi.org/10.1088/1126-6708/2007/08/026 et al. (CMS Collaboration) [2019] (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  29. (CMS Collaboration), A.M.S.: Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. Eur. Phys. J. C 79(5), 421 (2019) Kannike [2012] Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  30. Kannike, K.: Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72(7), 2093 (2012) Ginzburg and Ivanov [2005] Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  31. Ginzburg, I.F., Ivanov, I.P.: Tree-level unitarity constraints in the most general two higgs doublet model. Phys. Rev. D 72, 115010 (2005) https://doi.org/10.1103/PhysRevD.72.115010 Peskin and Takeuchi [1992] Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  32. Peskin, M.E., Takeuchi, T.: Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) https://doi.org/10.1103/PhysRevD.46.381 Grimus et al. [2008] Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  33. Grimus, W., Lavoura, L., Ogreid, O.M., Osland, P.: The oblique parameters in multi-higgs-doublet models. Nucl. Phys. B 801(1), 81–96 (2008) https://doi.org/10.1016/j.nuclphysb.2008.04.019 Forshaw et al. [2001] Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  34. Forshaw, J.R., White, B.E., Ross, D.A.: Higgs mass bounds in a triplet model. JHEP 2001(10), 007 (2001) https://doi.org/10.1088/1126-6708/2001/10/007 Cheng et al. [2023] Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  35. Cheng, Y., He, X.-G., Huang, F., Sun, J., Xing, Z.-P.: Electroweak precision tests for triplet scalars. Nucl. Phys. B 989, 116118 (2023) https://doi.org/10.1016/j.nuclphysb.2023.116118 Staub [2014] Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  36. Staub, F.: Sarah 4: A tool for (not only susy) model builders. Comp. Phys. Comm. 185(6), 1773–1790 (2014) https://doi.org/10.1016/j.cpc.2014.02.018 Bélanger et al. [2015] Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  37. Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A.: micromegas4.1: Two dark matter candidates. Computer Physics Communications 192, 322–329 (2015) https://doi.org/10.1016/j.cpc.2015.03.003 Sarma et al. [2021] Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300 Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300
  38. Sarma, L., Das, P., Das, M.K.: Scalar dark matter and leptogenesis in the minimal scotogenic model. Nucl. Phys. B 963, 115300 (2021) https://doi.org/10.1016/j.nuclphysb.2020.115300

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.