Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crossed Products, Extended Phase Spaces and the Resolution of Entanglement Singularities (2306.09314v4)

Published 15 Jun 2023 in hep-th

Abstract: We identify a direct correspondence between the crossed product construction which plays a crucial role in the theory of Type III von Neumann algebras, and the extended phase space construction which restores the integrability of non-zero charges generated by gauge symmetries in the presence of spatial substructures. This correspondence provides a blue-print for resolving singularities which are encountered in the computation of entanglement entropy for subregions in quantum field theories. The extended phase space encodes quantities that would be regarded as `pure gauge' from the perspective of the full theory, but are nevertheless necessary for gluing together, in a path integral sense, physics in different subregions. These quantities are required in order to maintain gauge covariance under such gluings. The crossed product provides a consistent method for incorporating these necessary degrees of freedom into the operator algebra associated with a given subregion. In this way, the extended phase space completes the subregion algebra and subsequently allows for the assignment of a meaningful, finite entropy to states therein.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (107)
  1. R. Haag and D. Kastler, “An Algebraic approach to quantum field theory,” J. Math. Phys. 5 (1964) 848–861.
  2. S. Leutheusser and H. Liu, “Emergent times in holographic duality,” arXiv:2112.12156 [hep-th].
  3. S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” arXiv:2212.13266 [hep-th].
  4. L. Ciambelli and R. G. Leigh, “Isolated Surfaces and Symmetries of Gravity,” Phys. Rev. D 104 (2021) no. 4, 046005, arXiv:2104.07643 [hep-th].
  5. L. Ciambelli, R. G. Leigh, and P.-C. Pai, “Embeddings and Integrable Charges for Extended Corner Symmetry,” Phys. Rev. Lett. 128 (2022) , arXiv:2111.13181 [hep-th].
  6. L. Ciambelli, “From Asymptotic Symmetries to the Corner Proposal,” 12, 2022. arXiv:2212.13644 [hep-th].
  7. L. Freidel, “A Canonical Bracket for Open Gravitational System,” arXiv:2111.14747 [hep-th].
  8. L. Ciambelli and R. G. Leigh, “Universal Corner Symmetry and the Orbit Method for Gravity,” arXiv:2207.06441 [hep-th].
  9. M. S. Klinger, R. G. Leigh, and P.-C. Pai, “Extended Phase Space in General Gauge Theories,” arXiv:2303.06786 [hep-th].
  10. H. Araki, “Type of von Neumann Algebra Associated with Free Field,” Progress of Theoretical Physics 32 (1964) no. 6, 956–965, https://academic.oup.com/ptp/article-pdf/32/6/956/5311286/32-6-956.pdf. https://doi.org/10.1143/PTP.32.956.
  11. R. Longo, “Algebraic and modular structure of von Neumann algebras of physics,” Commun. Math. Phys. 38 (1982) 551.
  12. K. Fredenhagen, “On the Modular Structure of Local Algebras of Observables,” Commun. Math. Phys. 97 (1985) 79.
  13. M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications. Lecture Notes in Mathematics. Springer-Verlag, 1970.
  14. F. Combes, “Poids associé à une algèbre hilbertienne à gauche,” Compositio Mathematica 23 (1971) no. 1, 49–77. http://eudml.org/doc/89076.
  15. H. J. Borchers, “On revolutionizing quantum field theory with Tomita’s modular theory,” J. Math. Phys. 41 (2000) 3604–3673.
  16. E. Witten, “APS medal for exceptional achievement in research: Invited article on entanglement properties of quantum field theory,” Reviews of Modern Physics 90 (2018) no. 4, . https://doi.org/10.1103%2Frevmodphys.90.045003.
  17. M. Nakamura and Z. Takeda, “On some elementary properties of the crossed products of von neumann algebras,” Proceedings of the Japan Academy 34 (1958) no. 8, 489–494.
  18. T. Turumaru, “Crossed product of operator algebra,” Tohoku Mathematical Journal, Second Series 10 (1958) no. 3, 355–365.
  19. M. Takesaki, “Periodic and homogeneous states on a von neumann algebra. ii,” Bulletin of The American Mathematical Society - BULL AMER MATH SOC 79 (1973) .
  20. M. Takesaki, “Duality for crossed products and the structure of von Neumann algebras of type III,” Acta Mathematica 131 (1973) no. none, 249 – 310. https://doi.org/10.1007/BF02392041.
  21. A. Connes, “Une classification des facteurs de type {iii}iii\{\rm iii\}{ roman_iii },” Annales scientifiques de l’École Normale Supérieure 6 (1973) no. 2, 133–252. http://eudml.org/doc/81916.
  22. U. HAAGERUP, “On the dual weights for crossed products of von neumann algebras i: Removing separability conditions,” Mathematica Scandinavica 43 (1978) no. 1, 99–118. http://www.jstor.org/stable/24491344.
  23. U. HAAGERUP, “On the dual weights for crossed products of von neumann algebras ii: Application of operator valued weights,” Mathematica Scandinavica 43 (1978) no. 1, 119–140. http://www.jstor.org/stable/24491345.
  24. W. Donnelly, “Decomposition of Entanglement Entropy in Lattice Gauge Theory,” Phys. Rev. D 85 (2012) 085004, arXiv:1109.0036 [hep-th].
  25. W. Donnelly and L. Freidel, “Local Subsystems in Gauge Theory and Gravity,” JHEP 09 (2016) 102, arXiv:1601.04744 [hep-th].
  26. J. R. Fliss, X. Wen, O. Parrikar, C.-T. Hsieh, B. Han, T. L. Hughes, and R. G. Leigh, “Interface Contributions to Topological Entanglement in Abelian Chern-Simons Theory,” JHEP 09 (2017) 056, arXiv:1705.09611 [cond-mat.str-el].
  27. J. R. Fliss and R. G. Leigh, “Interfaces and the extended Hilbert space of Chern-Simons theory,” JHEP 07 (2020) 009, arXiv:2004.05123 [hep-th].
  28. E. Noether, “Invariant Variation Problems,” Transport theory and statistical physics 1 (1971) no. 3, 186–207.
  29. L. Freidel, M. Geiller, and W. Wieland, “Corner Symmetry and Quantum Geometry,” arXiv:2302.12799 [hep-th].
  30. A. P. Balachandran, L. Chandar, and A. Momen, “Edge States in Gravity and Black Hole Physics,” Nucl. Phys. B 461 (1996) 581–596, arXiv:gr-qc/9412019.
  31. S. Carlip, “The Statistical Mechanics of the (2+1)-dimensional Black Hole,” Phys. Rev. D 51 (1995) 632–637, arXiv:gr-qc/9409052.
  32. S. Carlip, “The Statistical Mechanics of the Three-dimensional Euclidean Black Hole,” Phys. Rev. D 55 (1997) 878–882, arXiv:gr-qc/9606043.
  33. A. P. Balachandran, L. Chandar, and A. Momen, “Edge States in Canonical Gravity,” in 17th Annual MRST (Montreal-Rochester-Syracuse-Toronto) Meeting on High-energy Physics. 5, 1995. arXiv:gr-qc/9506006.
  34. T. Regge and C. Teitelboim, “Role of Surface Integrals in the Hamiltonian Formulation of General Relativity,” Annals of Physics 88 (1974) no. 1, 286–318. https://www.sciencedirect.com/science/article/pii/0003491674904047.
  35. W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Gravitational Edge Modes, Coadjoint Orbits, and Hydrodynamics,” JHEP 09 (2021) 008, arXiv:2012.10367 [hep-th].
  36. M. Geiller, “Edge Modes and Corner Ambiguities in 3d Chern–Simons Theory and Gravity,” Nucl. Phys. B 924 (2017) 312–365, arXiv:1703.04748 [gr-qc].
  37. L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part I. Corner Potentials and Charges,” JHEP 11 (2020) 026, arXiv:2006.12527 [hep-th].
  38. L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part II. Corner Metric and Lorentz Charges,” JHEP 11 (2020) 027, arXiv:2007.03563 [hep-th].
  39. L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part III. Corner Simplicity Constraints,” JHEP 01 (2021) 100, arXiv:2007.12635 [hep-th].
  40. V. Chandrasekaran, E. E. Flanagan, I. Shehzad, and A. J. Speranza, “Brown-York Charges at Null Boundaries,” JHEP 01 (2022) 029, arXiv:2109.11567 [hep-th].
  41. W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Matrix Quantization of Gravitational Edge Modes,” arXiv:2212.09120 [hep-th].
  42. L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended Corner Symmetry, Charge Bracket and Einstein’s Equations,” JHEP 09 (2021) 083, arXiv:2104.12881 [hep-th].
  43. A. J. Speranza, “Local Phase Space and Edge Modes for Diffeomorphism-invariant Theories,” JHEP 02 (2018) 021, arXiv:1706.05061 [hep-th].
  44. H. Casini and J. M. Magan, “On completeness and generalized symmetries in quantum field theory,” Mod. Phys. Lett. A 36 (2021) no. 36, 2130025, arXiv:2110.11358 [hep-th].
  45. E. Witten, “Algebras, Regions, and Observers,” arXiv:2303.02837 [hep-th].
  46. R. M. Wald, “Black Hole Entropy is the Noether Charge,” Physical Review D 48 (1993) no. 8, R3427.
  47. V. Iyer and R. M. Wald, “Some Properties of the Noether Charge and a Proposal for Dynamical Black Hole Entropy,” Physical review D 50 (1994) no. 2, 846.
  48. M. Banados, C. Teitelboim, and J. Zanelli, “The Black Hole in Three-dimensional Space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099.
  49. A. Strominger, “Black Hole Entropy from Near Horizon Microstates,” JHEP 02 (1998) 009, arXiv:hep-th/9712251.
  50. W. Donnelly and A. C. Wall, “Entanglement Entropy of Electromagnetic Edge Modes,” Phys. Rev. Lett. 114 (2015) no. 11, 111603, arXiv:1412.1895 [hep-th].
  51. W. Donnelly, “Entanglement Entropy and Nonabelian Gauge Symmetry,” Class. Quant. Grav. 31 (2014) no. 21, 214003, arXiv:1406.7304 [hep-th].
  52. W. Donnelly and A. C. Wall, “Geometric Entropy and Edge Modes of the Electromagnetic Field,” Phys. Rev. D 94 (2016) no. 10, 104053, arXiv:1506.05792 [hep-th].
  53. D. Das and S. Datta, “Universal Features of Left-right Entanglement Entropy,” Phys. Rev. Lett. 115 (2015) no. 13, 131602, arXiv:1504.02475 [hep-th].
  54. X. Wen, S. Matsuura, and S. Ryu, “Edge Theory Approach to Topological Entanglement Entropy, Mutual Information and Entanglement Negativity in Chern-Simons Theories,” Phys. Rev. B 93 (2016) no. 24, 245140, arXiv:1603.08534 [cond-mat.mes-hall].
  55. S. Carlip, “Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon,” Phys. Rev. Lett. 120 (2018) no. 10, 101301, arXiv:1702.04439 [gr-qc].
  56. L.-Q. Chen, W. Z. Chua, S. Liu, A. J. Speranza, and B. d. S. L. Torres, “Virasoro Hair and Entropy for Axisymmetric Killing Horizons,” Phys. Rev. Lett. 125 (2020) 241302, arXiv:2006.02430 [hep-th].
  57. M. Geiller and P. Jai-akson, “Extended Actions, Dynamics of Edge Modes, and Entanglement Entropy,” JHEP 09 (2020) 134, arXiv:1912.06025 [hep-th].
  58. T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for Deformed Half-spaces and the Averaged Null Energy Condition,” Journal of High Energy Physics 2016 (2016) no. 9, 1–35.
  59. T. Faulkner, R. G. Leigh, and O. Parrikar, “Shape Dependence of Entanglement Entropy in Conformal Field Theories,” Journal of High Energy Physics 2016 (2016) no. 4, 1–39.
  60. V. Balasubramanian, J. R. Fliss, R. G. Leigh, and O. Parrikar, “Multi-boundary Entanglement in Chern-Simons Theory and Link Invariants,” Journal of High Energy Physics 2017 (2017) no. 4, 1–34.
  61. V. Balasubramanian, M. DeCross, J. Fliss, A. Kar, R. G. Leigh, and O. Parrikar, “Entanglement Entropy and the Colored Jones Polynomial,” Journal of High Energy Physics 2018 (2018) no. 5, 1–41.
  62. V. Chandrasekaran and A. J. Speranza, “Anomalies in Gravitational Charge Algebras of Null Boundaries and Black Hole Entropy,” JHEP 01 (2021) 137, arXiv:2009.10739 [hep-th].
  63. S. Doplicher, D. Kastler, and D. W. Robinson, “Covariance algebras in field theory and statistical mechanics,” Communications in Mathematical Physics 3 (1966) no. 1, 1–28.
  64. F. Hiai, “Concise lectures on selected topics of von neumann algebras,” arXiv:2004.02383 [math.OA].
  65. Springer, 2003.
  66. E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008, arXiv:2112.12828 [hep-th].
  67. T. Digernes, “Poids dual sur un produit croisé,” tech. rep., Aix-Marseille 2. Cent. Phys. Part., Marseille, 1973. http://cds.cern.ch/record/414178.
  68. 1979.
  69. J. D. Bekenstein, “Black holes and the second law,” Lett. Nuovo Cim. 4 (1972) 737–740.
  70. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333–2346.
  71. J. D. Bekenstein, “Generalized second law of thermodynamics in black hole physics,” Phys. Rev. D 9 (1974) 3292–3300.
  72. V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and generalized entropy,” arXiv:2209.10454 [hep-th].
  73. K. Jensen, J. Sorce, and A. Speranza, “Generalized entropy for general subregions in quantum gravity,” arXiv:2306.01837 [hep-th].
  74. S. Ali Ahmad and R. Jefferson, “Crossed product algebras and generalized entropy for subregions,” arXiv:2306.07323 [hep-th].
  75. K. C. Mackenzie and K. C. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids. No. 213. Cambridge University Press, 2005.
  76. M. Crainic and R. L. Fernandes, “Integrability of Lie Brackets,” Annals of Mathematics (2003) 575–620.
  77. W. Jia, M. S. Klinger, and R. G. Leigh, “BRST cohomology is Lie algebroid cohomology,” Nucl. Phys. B 994 (2023) 116317, arXiv:2303.05540 [hep-th].
  78. C. Fournel, S. Lazzarini, and T. Masson, “Formulation of Gauge Theories on Transitive Lie Algebroids,” J. Geom. Phys. 64 (2013) 174–191, arXiv:1205.6725 [math-ph].
  79. L. Ciambelli and R. G. Leigh, “Lie Algebroids and the Geometry of Off-shell BRST,” Nucl. Phys. B 972 (2021) 115553, arXiv:2101.03974 [hep-th].
  80. C. Blohmann, M. C. B. Fernandes, and A. Weinstein, “Groupoid Symmetry and Constraints in General Relativity,” Commun. Contemp. Math. 15 (2013) no. 01, 1250061, arXiv:1003.2857 [math.DG].
  81. S. Lazzarini and T. Masson, “Connections on Lie Algebroids and on Derivation-based Noncommutative Geometry,” Journal of Geometry and Physics 62 (2012) no. 2, 387–402. https://www.sciencedirect.com/science/article/pii/S0393044011002506.
  82. U. Carow-Watamura, M. A. Heller, N. Ikeda, T. Kaneko, and S. Watamura, “Off-shell Covariantization of Algebroid Gauge Theories,” PTEP 2017 (2017) no. 8, 083B01, arXiv:1612.02612 [hep-th].
  83. A. Kotov and T. Strobl, “Lie Algebroids, Gauge Theories, and Compatible Geometrical Structures,” Rev. Math. Phys. 31 (2018) no. 04, 1950015, arXiv:1603.04490 [math.DG].
  84. J. Attard, J. François, S. Lazzarini, and T. Masson, “Cartan Connections and Atiyah Lie Algebroids,” Journal of Geometry and Physics 148 (2020) 103541. https://www.sciencedirect.com/science/article/pii/S0393044019302220.
  85. T. Strobl, “Algebroid Yang-Mills Theories,” Phys. Rev. Lett. 93 (2004) 211601, arXiv:hep-th/0406215.
  86. M. Bojowald, A. Kotov, and T. Strobl, “Lie Algebroid Morphisms, Poisson Sigma Models, and Off-shell Closed Gauge Symmetries,” Journal of Geometry and Physics 54 (2005) no. 4, 400–426. https://www.sciencedirect.com/science/article/pii/S0393044004001731.
  87. C. Mayer and T. Strobl, “Lie Algebroid Yang Mills with Matter Fields,” J. Geom. Phys. 59 (2009) 1613–1623, arXiv:0908.3161 [hep-th].
  88. N. P. Landsman, “Lie groupoid c*-algebras and weyl quantization,” Communications in mathematical physics 206 (1999) no. 2, 367–381.
  89. N. P. Landsman and B. Ramazan, “Quantization of poisson algebras associated to lie algebroids,” arXiv:math-ph/0001005 [math-ph].
  90. B. Kostant, “On Certain Unitary Representations which Arise from a Quantization Theory,” Conf. Proc. C 690722 (1969) 237–253.
  91. B. Kostant, “Quantization and Unitary Representations,” in Lectures in Modern Analysis and Applications III, pp. 87–208. Springer, 1970.
  92. V. Guillemin and S. Sternberg, “Geometric Quantization and Multiplicities of Group Representations,” Inventiones mathematicae 67 (1982) no. 3, 515–538.
  93. V. Guillemin and S. Sternberg, “A Normal Form for the Moment Map,” Differential geometric methods in mathematical physics 6 (1984) 161–175.
  94. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics. Cambridge university press, 1990.
  95. B. Kostant and S. Sternberg, “Symplectic Reduction, BRS Cohomology, and Infinite Dimensional Clifford Algebras,” Annals Phys. 176 (1987) 49.
  96. L. Ciambelli, L. Freidel, and R. G. Leigh, “Toward Quantum Raychaudhuri,” to appear .
  97. A. Connes, “On the spatial theory of von neumann algebras,” Journal of Functional Analysis 35 (1980) no. 2, 153–164. https://www.sciencedirect.com/science/article/pii/0022123680900026.
  98. J. J. Bisognano and E. H. Wichmann, “On the Duality Condition for Quantum Fields,” J. Math. Phys. 17 (1976) 303–321.
  99. S. Banerjee, M. Dorband, J. Erdmenger, and A.-L. Weigel, “Geometric Phases Characterise Operator Algebras and Missing Information,” arXiv:2306.00055 [hep-th].
  100. R. Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems,” Journal of the Physical Society of Japan 12 (1957) no. 6, 570–586, https://doi.org/10.1143/JPSJ.12.570. https://doi.org/10.1143/JPSJ.12.570.
  101. P. C. Martin and J. S. Schwinger, “Theory of many particle systems. 1.,” Phys. Rev. 115 (1959) 1342–1373.
  102. R. Haag, N. M. Hugenholtz, and M. Winnink, “On the Equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5 (1967) 215–236.
  103. A. Connes, Sur le theoreme de radon nikodym pour les poids normaux fideles semi-finis. Centre de Physique Théorique, 1973.
  104. Springer, 1982.
  105. Springer Science & Business Media, 2012.
  106. M. Khoshkam and G. Skandalis, “Crossed products of c*-algebras by groupoids and inverse semigroups,” Journal of Operator Theory (2004) 255–279.
  107. C. Anantharaman-Delaroche, “Some remarks about the weak containment property for groupoids and semigroups,” arXiv:1604.01724 [math.OA].
Citations (27)

Summary

We haven't generated a summary for this paper yet.