Crossed Products, Conditional Expectations and Constraint Quantization (2312.16678v3)
Abstract: Recent work has highlighted the importance of crossed products in correctly elucidating the operator algebraic approach to quantum field theories. In the gravitational context, the crossed product simultaneously promotes von Neumann algebras associated with subregions in diffeomorphism covariant quantum field theories from type III to type II, and provides the necessary ingredients to gravitationally dress operators, thereby enforcing the constraints of the theory. In this note we enhance the crossed product construction to the context of general gauge theories with arbitrary combinations of internal and spacetime local symmetries. This is done by leveraging the correspondence between the crossed product and the extended phase space. We then undertake a detailed study of constraint quantization from the perspective of a generic crossed product algebra. We study and compare four distinct approaches to constraint quantization from this point of view: refined algebraic quantization, BRST quantization, path integral quantization, and the commutation theorem for crossed products. Far from simply reproducing existing analyses, the operator algebraic viewpoint sheds new light on old problems by reformulating the dressing of operators in terms of conditional expectations and other closely related projection maps. We conclude by applying our approach to the constraint quantization of three distinct gauge theories including a discussion of gravity on null hypersurfaces.
- M. S. Klinger and R. G. Leigh, “Crossed Products, Extended Phase Spaces and the Resolution of Entanglement Singularities,” arXiv:2306.09314 [hep-th].
- M. Takesaki, “Duality for crossed products and the structure of von Neumann algebras of type III,” Acta Mathematica 131 (1973) no. none, 249 – 310. https://doi.org/10.1007/BF02392041.
- A. Connes, “Une classification des facteurs de type {iii}iii\{\rm iii\}{ roman_iii },” Annales scientifiques de l’École Normale Supérieure 6 (1973) no. 2, 133–252. http://eudml.org/doc/81916.
- Springer, 2003.
- T. Faulkner, R. G. Leigh, and O. Parrikar, “Shape Dependence of Entanglement Entropy in Conformal Field Theories,” Journal of High Energy Physics 2016 (2016) no. 4, 1–39.
- T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for Deformed Half-spaces and the Averaged Null Energy Condition,” Journal of High Energy Physics 2016 (2016) no. 9, 1–35.
- E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008, arXiv:2112.12828 [hep-th].
- V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and generalized entropy,” arXiv:2209.10454 [hep-th].
- V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
- K. Jensen, J. Sorce, and A. Speranza, “Generalized entropy for general subregions in quantum gravity,” arXiv:2306.01837 [hep-th].
- S. Leutheusser and H. Liu, “Causal connectability between quantum systems and the black hole interior in holographic duality,” arXiv:2110.05497 [hep-th].
- S. Leutheusser and H. Liu, “Emergent times in holographic duality,” arXiv:2112.12156 [hep-th].
- S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” arXiv:2212.13266 [hep-th].
- S. Ali Ahmad and R. Jefferson, “Crossed product algebras and generalized entropy for subregions,” arXiv:2306.07323 [hep-th].
- M. Ali and V. Suneeta, “Generalized entropy in higher curvature gravity and entropy of algebra of observables,” Phys. Rev. D 108 (2023) no. 6, 066017, arXiv:2307.00241 [hep-th].
- R. M. Soni, “A Type I𝐼Iitalic_I Approximation of the Crossed Product,” arXiv:2307.12481 [hep-th].
- E. Bahiru, “Algebras and their Covariant representations in quantum gravity,” arXiv:2308.14166 [hep-th].
- J. Kudler-Flam, S. Leutheusser, and G. Satishchandran, “Generalized Black Hole Entropy is von Neumann Entropy,” arXiv:2309.15897 [hep-th].
- L. Ciambelli, R. G. Leigh, and P.-C. Pai, “Embeddings and Integrable Charges for Extended Corner Symmetry,” Phys. Rev. Lett. 128 (2022) , arXiv:2111.13181 [hep-th].
- M. S. Klinger, R. G. Leigh, and P.-C. Pai, “Extended Phase Space in General Gauge Theories,” arXiv:2303.06786 [hep-th].
- L. Ciambelli, L. Freidel, and R. G. Leigh, “Null Raychaudhuri: Canonical Structure and the Dressing Time,” arXiv:2309.03932 [hep-th].
- L. Ciambelli and R. G. Leigh, “Isolated Surfaces and Symmetries of Gravity,” Phys. Rev. D 104 (2021) no. 4, 046005, arXiv:2104.07643 [hep-th].
- L. Ciambelli, “From Asymptotic Symmetries to the Corner Proposal,” 12, 2022. arXiv:2212.13644 [hep-th].
- L. Ciambelli and R. G. Leigh, “Universal Corner Symmetry and the Orbit Method for Gravity,” arXiv:2207.06441 [hep-th].
- W. Donnelly and L. Freidel, “Local Subsystems in Gauge Theory and Gravity,” JHEP 09 (2016) 102, arXiv:1601.04744 [hep-th].
- L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part I. Corner Potentials and Charges,” JHEP 11 (2020) 026, arXiv:2006.12527 [hep-th].
- L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part II. Corner Metric and Lorentz Charges,” JHEP 11 (2020) 027, arXiv:2007.03563 [hep-th].
- L. Freidel, M. Geiller, and D. Pranzetti, “Edge Modes of Gravity. Part III. Corner Simplicity Constraints,” JHEP 01 (2021) 100, arXiv:2007.12635 [hep-th].
- L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended Corner Symmetry, Charge Bracket and Einstein’s Equations,” JHEP 09 (2021) 083, arXiv:2104.12881 [hep-th].
- L. Freidel, M. Geiller, and W. Wieland, “Corner Symmetry and Quantum Geometry,” arXiv:2302.12799 [hep-th].
- A. J. Speranza, “Local Phase Space and Edge Modes for Diffeomorphism-invariant Theories,” JHEP 02 (2018) 021, arXiv:1706.05061 [hep-th].
- W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Matrix Quantization of Gravitational Edge Modes,” arXiv:2212.09120 [hep-th].
- A. J. Speranza, “Ambiguity Resolution for Integrable Gravitational Charges,” JHEP 07 (2022) 029, arXiv:2202.00133 [hep-th].
- W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Gravitational Edge Modes, Coadjoint Orbits, and Hydrodynamics,” Journal of High Energy Physics 2021 (2021) no. 9, 1–63.
- P. Dirac, Lectures on Quantum Mechanics. Belfer Graduate School of Science. Monographs series. Belfer Graduate School of Science, Yeshiva University, 1964. https://books.google.com/books?id=oQNRAAAAMAAJ.
- A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T. Thiemann, “Quantization of diffeomorphism invariant theories of connections with local degrees of freedom,” J. Math. Phys. 36 (1995) 6456–6493, arXiv:gr-qc/9504018.
- D. Giulini and D. Marolf, “A Uniqueness theorem for constraint quantization,” Class. Quant. Grav. 16 (1999) 2489–2505, arXiv:gr-qc/9902045.
- D. Giulini and D. Marolf, “On the generality of refined algebraic quantization,” Class. Quant. Grav. 16 (1999) 2479–2488, arXiv:gr-qc/9812024.
- D. Marolf, “Group averaging and refined algebraic quantization: Where are we now?,” in 9th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 9). 7, 2000. arXiv:gr-qc/0011112.
- N. P. Landsman, “Rieffel induction as generalized quantum Marsden-Weinstein reduction,” arXiv:hep-th/9305088.
- I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra and Quantization,” Phys. Lett. B 102 (1981) 27–31.
- C. Becchi, A. Rouet, and R. Stora, “The Abelian Higgs-Kibble Model. Unitarity of the S Operator,” Phys. Lett. B 52 (1974) 344–346.
- C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble Model,” Commun. Math. Phys. 42 (1975) 127–162.
- C. Becchi, A. Rouet, and R. Stora, “Renormalization of Gauge Theories,” Annals Phys. 98 (1976) 287–321.
- I. V. Tyutin, “Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism,” arXiv:0812.0580 [hep-th].
- M. Henneaux and C. Teitelboim, Quantization of gauge systems. 1992.
- G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in gauge theories,” Phys. Rept. 338 (2000) 439–569, arXiv:hep-th/0002245.
- A. Fuster, M. Henneaux, and A. Maas, “BRST quantization: A Short review,” Int. J. Geom. Meth. Mod. Phys. 2 (2005) 939–964, arXiv:hep-th/0506098.
- L. D. Faddeev and V. N. Popov, “Feynman Diagrams for the Yang-Mills Field,” Phys. Lett. B 25 (1967) 29–30.
- S. Cordes, G. W. Moore, and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories,” Nucl. Phys. B Proc. Suppl. 41 (1995) 184–244, arXiv:hep-th/9411210.
- R. Stora, “Exercises in equivariant cohomology,” in NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, pp. 265–279. 10, 1996. arXiv:hep-th/9611114.
- S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University Press, 8, 2013.
- T. Digernes, DUALITY FOR WEIGHTS ON COVARIANT SYSTEMS AND ITS APPLICATIONS. University of California, Los Angeles, 1975.
- U. HAAGERUP, “On the dual weights for crossed products of von neumann algebras ii: Application of operator valued weights,” Mathematica Scandinavica 43 (1978) no. 1, 119–140. http://www.jstor.org/stable/24491345.
- Cambridge University Press, 1978.
- W. Jia, M. S. Klinger, and R. G. Leigh, “BRST Cohomology is Lie Algebroid Cohomology,” arXiv:2303.05540 [hep-th].
- Cambridge University Press, 1998.
- Springer Science & Business Media, 2012.
- N. P. Landsman, “Lie groupoid c*-algebras and weyl quantization,” Communications in mathematical physics 206 (1999) no. 2, 367–381.
- D. Marolf, “Path integrals and instantons in quantum gravity: Minisuperspace models,” Phys. Rev. D 53 (1996) 6979–6990, arXiv:gr-qc/9602019.
- T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “The Hilbert space of de Sitter quantum gravity,” arXiv:2303.16315 [hep-th].
- T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “Holography of information in de Sitter space,” arXiv:2303.16316 [hep-th].
- A. Higuchi, “Quantum linearization instabilities of de Sitter space-time. 1,” Class. Quant. Grav. 8 (1991) 1961–1981.
- A. Higuchi, “Quantum linearization instabilities of de Sitter space-time. 2,” Class. Quant. Grav. 8 (1991) 1983–2004.
- U. HAAGERUP, “On the dual weights for crossed products of von neumann algebras i: Removing separability conditions,” Mathematica Scandinavica 43 (1978) no. 1, 99–118. http://www.jstor.org/stable/24491344.
- F. Hiai, “Concise lectures on selected topics of von neumann algebras,” arXiv:2004.02383 [math.OA].
- P. A. Hoehn, A. R. H. Smith, and M. P. E. Lock, “Trinity of relational quantum dynamics,” Phys. Rev. D 104 (2021) no. 6, 066001, arXiv:1912.00033 [quant-ph].
- V. Balasubramanian and C. Cummings, “The entropy of finite gravitating regions,” arXiv:2312.08434 [hep-th].
- V. Chandrasekaran, E. E. Flanagan, I. Shehzad, and A. J. Speranza, “Brown-York Charges at Null Boundaries,” JHEP 01 (2022) 029, arXiv:2109.11567 [hep-th].
- L. Freidel and P. Jai-akson, “Carrollian hydrodynamics from symmetries,” Class. Quant. Grav. 40 (2023) no. 5, 055009, arXiv:2209.03328 [hep-th].
- L. Freidel and P. Jai-akson, “Carrollian hydrodynamics and symplectic structure on stretched horizons,” arXiv:2211.06415 [gr-qc].
- L. Ciambelli and R. G. Leigh, “Lie Algebroids and the Geometry of Off-shell BRST,” Nucl. Phys. B 972 (2021) 115553, arXiv:2101.03974 [hep-th].
- American Mathematical Society, 2016.
- E. Celeghini, M. Gadella, and M. A. del Olmo, “Groups, Special Functions and Rigged Hilbert Spaces,” Axioms 8 (2019) no. 3, 89.
- K. Maurin, “GENERAL EIGENFUNCTION EXPANSIONS AND GROUP REPRESENTATIONS (LECTURE NOTES),”.