Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Guided Sampling-Based Motion Planning with Dynamics in Unknown Environments (2306.09229v1)

Published 15 Jun 2023 in cs.RO

Abstract: Despite recent progress improving the efficiency and quality of motion planning, planning collision-free and dynamically-feasible trajectories in partially-mapped environments remains challenging, since constantly replanning as unseen obstacles are revealed during navigation both incurs significant computational expense and can introduce problematic oscillatory behavior. To improve the quality of motion planning in partial maps, this paper develops a framework that augments sampling-based motion planning to leverage a high-level discrete layer and prior solutions to guide motion-tree expansion during replanning, affording both (i) faster planning and (ii) improved solution coherence. Our framework shows significant improvements in runtime and solution distance when compared with other sampling-based motion planners.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. S. Koenig and M. Likhachev, “D* lite,” in Proceedings of the AAAI/IAAI, vol. 15, 2002, pp. 476–483.
  2. R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in IEEE International Conference on Robotics and Automation, vol. 1, 2000, pp. 521–528.
  3. F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang, “Far planner: Fast, attemptable route planner using dynamic visibility update,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9–16.
  4. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.
  5. I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems with complex dynamics,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 116–131, 2012.
  6. E. Plaku, “Region-guided and sampling-based tree search for motion planning with dynamics,” IEEE Transactions on Robotics, vol. 31, pp. 723–735, 2015.
  7. E. Plaku, E. Plaku, and P. Simari, “Clearance-driven motion planning for mobile robots with differential constraints,” Robotica, vol. 36, pp. 971–993, 2018.
  8. Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2018, pp. 1–9.
  9. O. Arslan and P. Tsiotras, “Machine learning guided exploration for sampling-based motion planning algorithms,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 2646–2652.
  10. J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural RRT*: Learning-based optimal path planning,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758, 2020.
  11. S. M. LaValle, “Motion planning: The essentials,” IEEE Robotics & Automation Magazine, vol. 18, no. 1, pp. 79–89, 2011.
  12. A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling for planning under differential constraints,” in IEEE International Conference on Robotics and Automation, 2009, pp. 2859–2865.
  13. D. Devaurs, T. Simeon, and J. Cortés, “Enhancing the transition-based RRT to deal with complex cost spaces,” in IEEE International Conference on Robotics and Automation, 2013, pp. 4120–4125.
  14. G. P. Kontoudis and K. G. Vamvoudakis, “Kinodynamic motion planning with continuous-time Q-learning: An online, model-free, and safe navigation framework,” IEEE transactions on neural networks and learning systems, vol. 30, no. 12, pp. 3803–3817, 2019.
  15. W. J. Wolfslag, M. Bharatheesha, T. M. Moerland, and M. Wisse, “RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1655–1662, 2018.
  16. J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and A. Giusti, “Path planning with local motion estimations,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2586–2593, 2020.
  17. H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4298–4305, 2019.
  18. E. Plaku, E. Plaku, and P. Simari, “Direct path superfacets: An intermediate representation for motion planning,” IEEE Robotics and Automation Letters, vol. 2, pp. 350–357, 2017.
  19. G. Yang, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-based motion planning via control barrier functions,” in International Conference on Automation, Control and Robots, 2019, pp. 22–29.
  20. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” International Journal on Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
  21. G. Goretkin, A. Perez, R. Platt Jr, and G. Konidaris, “Optimal sampling-based planning for linear-quadratic kinodynamic systems,” in IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 2429–2436.
  22. S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for non-holonomic dynamical systems,” in IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 5041–5047.
  23. ——, “Optimal kinodynamic motion planning using incremental sampling-based methods,” in IEEE Conference on Decision and Control, Atlanta, GA, 2010, pp. 7681–7687.
  24. J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based motion planning methods,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 295–318, 2021.
  25. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101, pp. 99–134, 1998.
  26. M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially observable environments: Scaling up,” in Machine Learning Proceedings, 1995, pp. 362–370.
  27. M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun, “Anytime dynamic A*: An anytime, replanning algorithm.” in International Conference on Automated Planning and Scheduling, vol. 5, 2005, pp. 262–271.
  28. O. Adiyatov and H. A. Varol, “A novel RRT-based algorithm for motion planning in dynamic environments,” in IEEE International Conference on Mechatronics and Automation (ICMA), 2017, pp. 1416–1421.
  29. C. Yuan, G. Liu, W. Zhang, and X. Pan, “An efficient RRT cache method in dynamic environments for path planning,” Robotics and Autonomous Systems, vol. 131, p. 103595, 2020.
  30. S. Dai and Y. Wang, “Long-horizon motion planning for autonomous vehicle parking incorporating incomplete map information,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8135–8142.
  31. E. Whiting, J. Battat, and S. Teller, “Topology of urban environments,” in Computer-Aided Architectural Design Futures Conference, 2007, pp. 114–128.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.