Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Re-weighted Gradient Descent via Distributionally Robust Optimization (2306.09222v5)

Published 15 Jun 2023 in cs.LG and cs.AI

Abstract: We present Re-weighted Gradient Descent (RGD), a novel optimization technique that improves the performance of deep neural networks through dynamic sample re-weighting. Leveraging insights from distributionally robust optimization (DRO) with Kullback-Leibler divergence, our method dynamically assigns importance weights to training data during each optimization step. RGD is simple to implement, computationally efficient, and compatible with widely used optimizers such as SGD and Adam. We demonstrate the effectiveness of RGD on various learning tasks, including supervised learning, meta-learning, and out-of-domain generalization. Notably, RGD achieves state-of-the-art results on diverse benchmarks, with improvements of +0.7% on DomainBed, +1.44% on tabular classification, \textcolor{blue}+1.94% on GLUE with BERT, and +1.01% on ImageNet-1K with ViT.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.