Papers
Topics
Authors
Recent
2000 character limit reached

A note on modular invariant species scale and potentials (2306.08673v1)

Published 14 Jun 2023 in hep-th

Abstract: The species scale provides an upper bound for the ultraviolet cutoff of effective theories of gravity coupled to a number of light particle species. We point out that modular invariant (super-)potentials provide a simple and computable expression of the species scale as a function of the moduli in toroidal orbifold compactifications of type II and heterotic string. Due to modular symmetry, these functions are valid over all moduli space and not only in asymptotic regions. We observe that additive logarithmic corrections to the species scale arise from the requirement that the latter be modular invariant. We recast the moduli-dependent expression of the species scale in terms of the gravitino mass or the scalar potential of these models and we connect it to swampland conjectures such as the anti-de Sitter distance conjecture and the gravitino conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. G. Dvali, “Black Holes and Large N Species Solution to the Hierarchy Problem,” Fortsch. Phys. 58 (2010) 528–536, 0706.2050.
  2. G. Dvali and M. Redi, “Black Hole Bound on the Number of Species and Quantum Gravity at LHC,” Phys. Rev. D 77 (2008) 045027, 0710.4344.
  3. G. Dvali and D. Lüst, “Evaporation of Microscopic Black Holes in String Theory and the Bound on Species,” Fortsch. Phys. 58 (2010) 505–527, 0912.3167.
  4. G. Dvali and C. Gomez, “Species and Strings,” 1004.3744.
  5. G. Dvali, C. Gomez, and D. Lüst, “Black Hole Quantum Mechanics in the Presence of Species,” Fortsch. Phys. 61 (2013) 768–778, 1206.2365.
  6. G. Veneziano, “Large N bounds on, and compositeness limit of, gauge and gravitational interactions,” JHEP 06 (2002) 051, hep-th/0110129.
  7. E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 (2019), no. 6, 1900037, 1903.06239.
  8. N. B. Agmon, A. Bedroya, M. J. Kang, and C. Vafa, “Lectures on the string landscape and the Swampland,” 2212.06187.
  9. A. Castellano, A. Herráez, and L. E. Ibáñez, “IR/UV mixing, towers of species and swampland conjectures,” JHEP 08 (2022) 217, 2112.10796.
  10. R. Blumenhagen, A. Gligovic, and S. Kaddachi, “Mass Hierarchies and Quantum Gravity Constraints in DKMM-refined KKLT,” 2206.08400.
  11. C. F. Cota, A. Mininno, T. Weigand, and M. Wiesner, “The asymptotic Weak Gravity Conjecture for open strings,” JHEP 11 (2022) 058, 2208.00009.
  12. A. Castellano, A. Herráez, and L. E. Ibáñez, “The Emergence Proposal in Quantum Gravity and the Species Scale,” 2212.03908.
  13. C. F. Cota, A. Mininno, T. Weigand, and M. Wiesner, “The Asymptotic Weak Gravity Conjecture in M-theory,” 2212.09758.
  14. A. Castellano, A. Herráez, and L. E. Ibáñez, “Towers and Hierarchies in the Standard Model from Emergence in Quantum Gravity,” 2302.00017.
  15. N. Cribiori, D. Lüst, and C. Montella, “Species Entropy and Thermodynamics,” 2305.10489.
  16. R. Blumenhagen, A. Gligovic, and A. Paraskevopoulou, “The Emergence Proposal and the Emergent String,” 2305.10490.
  17. D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Moduli-dependent Species Scale,” 2212.06841.
  18. N. Cribiori, D. Lüst, and G. Staudt, “Black hole entropy and moduli-dependent species scale,” 2212.10286.
  19. D. van de Heisteeg, C. Vafa, and M. Wiesner, “Bounds on Species Scale and the Distance Conjecture,” 2303.13580.
  20. C. Long, M. Montero, C. Vafa, and I. Valenzuela, “The Desert and the Swampland,” 2112.11467.
  21. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Holomorphic anomalies in topological field theories,” Nucl. Phys. B 405 (1993) 279–304, hep-th/9302103.
  22. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes,” Commun. Math. Phys. 165 (1994) 311–428, hep-th/9309140.
  23. E. Palti, C. Vafa, and T. Weigand, “Supersymmetric Protection and the Swampland,” JHEP 06 (2020) 168, 2003.10452.
  24. S. Ferrara, D. Lüst, A. D. Shapere, and S. Theisen, “Modular Invariance in Supersymmetric Field Theories,” Phys. Lett. B 225 (1989) 363.
  25. S. Ferrara, D. Lüst, and S. Theisen, “Target Space Modular Invariance and Low-Energy Couplings in Orbifold Compactifications,” Phys. Lett. B 233 (1989) 147–152.
  26. A. Font, L. E. Ibanez, D. Lüst, and F. Quevedo, “Supersymmetry Breaking From Duality Invariant Gaugino Condensation,” Phys. Lett. B 245 (1990) 401–408.
  27. L. J. Dixon, V. Kaplunovsky, and J. Louis, “Moduli dependence of string loop corrections to gauge coupling constants,” Nucl. Phys. B 355 (1991) 649–688.
  28. A. Font, L. E. Ibanez, D. Lüst, and F. Quevedo, “Strong - weak coupling duality and nonperturbative effects in string theory,” Phys. Lett. B 249 (1990) 35–43.
  29. M. Cvetic, A. Font, L. E. Ibanez, D. Lüst, and F. Quevedo, “Target space duality, supersymmetry breaking and the stability of classical string vacua,” Nucl. Phys. B 361 (1991) 194–232.
  30. S. Ferrara, C. Kounnas, D. Lüst, and F. Zwirner, “Duality invariant partition functions and automorphic superpotentials for (2,2) string compactifications,” Nucl. Phys. B 365 (1991) 431–466.
  31. E. Gonzalo, L. E. Ibáñez, and A. M. Uranga, “Modular symmetries and the swampland conjectures,” JHEP 05 (2019) 105, 1812.06520.
  32. S.-J. Lee, W. Lerche, and T. Weigand, “Modular Fluxes, Elliptic Genera, and Weak Gravity Conjectures in Four Dimensions,” JHEP 08 (2019) 104, 1901.08065.
  33. J. M. Leedom, N. Righi, and A. Westphal, “Heterotic de Sitter beyond modular symmetry,” JHEP 02 (2023) 209, 2212.03876.
  34. M. Scalisi and I. Valenzuela, “Swampland distance conjecture, inflation and α𝛼\alphaitalic_α-attractors,” JHEP 08 (2019) 160, 1812.07558.
  35. N. Cribiori, D. Lüst, and M. Scalisi, “The gravitino and the swampland,” JHEP 06 (2021) 071, 2104.08288.
  36. D. Andriot, “Bumping into the species scale with the scalar potential,” 2305.07480.
  37. D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Bounds on Field Range for Slowly Varying Positive Potentials,” 2305.07701.
  38. D. Lüst, E. Palti, and C. Vafa, “AdS and the Swampland,” Phys. Lett. B 797 (2019) 134867, 1906.05225.
  39. A. Castellano, A. Font, A. Herraez, and L. E. Ibáñez, “A gravitino distance conjecture,” JHEP 08 (2021) 092, 2104.10181.
  40. H. Ooguri and C. Vafa, “Geometry of N=2 strings,” Nucl. Phys. B 361 (1991) 469–518.
  41. Q. Bonnefoy, L. Ciambelli, D. Lüst, and S. Lüst, “Infinite Black Hole Entropies at Infinite Distances and Tower of States,” Nucl. Phys. B 958 (2020) 115112, 1912.07453.
  42. N. Cribiori, M. Dierigl, A. Gnecchi, D. Lüst, and M. Scalisi, “Large and small non-extremal black holes, thermodynamic dualities, and the Swampland,” JHEP 10 (2022) 093, 2202.04657.
  43. M. Delgado, M. Montero, and C. Vafa, “Black Holes as Probes of Moduli Space Geometry,” 2212.08676.
  44. J. M. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in M theory,” JHEP 12 (1997) 002, hep-th/9711053.
  45. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Corrections to macroscopic supersymmetric black hole entropy,” Phys. Lett. B 451 (1999) 309–316, hep-th/9812082.
  46. S. Ferrara and R. Kallosh, “Supersymmetry and attractors,” Phys. Rev. D 54 (1996) 1514–1524, hep-th/9602136.
  47. I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, “Topological amplitudes in string theory,” Nucl. Phys. B 413 (1994) 162–184, hep-th/9307158.
  48. G. L. Cardoso, B. de Wit, and S. Mahapatra, “Subleading and non-holomorphic corrections to N=2 BPS black hole entropy,” JHEP 02 (2009) 006, 0808.2627.
  49. G. L. Cardoso, B. de Wit, and S. Mahapatra, “BPS black holes, the Hesse potential, and the topological string,” JHEP 06 (2010) 052, 1003.1970.
  50. G. L. Cardoso, B. de Wit, and S. Mahapatra, “Deformations of special geometry: in search of the topological string,” JHEP 09 (2014) 096, 1406.5478.
  51. K. Behrndt, G. Lopes Cardoso, B. de Wit, R. Kallosh, D. Lüst, and T. Mohaupt, “Classical and quantum N=2 supersymmetric black holes,” Nucl. Phys. B 488 (1997) 236–260, hep-th/9610105.
  52. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993), no. 8, R3427–R3431, gr-qc/9307038.
  53. H. Arfaei, A. Bedroya, and M. Torabian, “Locality Outside Extremal Black Holes,” 2304.07315.
  54. I. Antoniadis, K. S. Narain, and T. R. Taylor, “Higher genus string corrections to gauge couplings,” Phys. Lett. B 267 (1991) 37–45.
  55. I. Antoniadis, E. Gava, and K. S. Narain, “Moduli corrections to gauge and gravitational couplings in four-dimensional superstrings,” Nucl. Phys. B 383 (1992) 93–109, hep-th/9204030.
  56. I. Antoniadis, E. Gava, and K. S. Narain, “Moduli corrections to gravitational couplings from string loops,” Phys. Lett. B 283 (1992) 209–212, hep-th/9203071.
  57. S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings from infinite distance limits,” JHEP 02 (2022) 190, 1910.01135.
  58. M. Etheredge, B. Heidenreich, S. Kaya, Y. Qiu, and T. Rudelius, “Sharpening the Distance Conjecture in diverse dimensions,” JHEP 12 (2022) 114, 2206.04063.
  59. G. Lopes Cardoso, D. Lüst, and T. Mohaupt, “Threshold corrections and symmetry enhancement in string compactifications,” Nucl. Phys. B 450 (1995) 115–173, hep-th/9412209.
  60. G. Lopes Cardoso, G. Curio, D. Lüst, T. Mohaupt, and S.-J. Rey, “BPS spectra and nonperturbative gravitational couplings in N=2, N=4 supersymmetric string theories,” Nucl. Phys. B 464 (1996) 18–58, hep-th/9512129.
  61. B. de Wit, G. Lopes Cardoso, D. Lüst, T. Mohaupt, and S.-J. Rey, “Higher order gravitational couplings and modular forms in N=2, D = 4 heterotic string compactifications,” Nucl. Phys. B 481 (1996) 353–388, hep-th/9607184.
  62. J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press, Princeton, NJ, USA, 1992.
  63. N. Cribiori, “De Sitter, gravitino mass and the swampland,” PoS CORFU2021 (2022) 200, 2203.15449.
  64. E. D’Hoker and J. Kaidi, “Lectures on modular forms and strings,” 2208.07242.
Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.