The Lion, the Witch, and the Wormhole: Ensemble averaging the symmetric product orbifold (2306.07321v2)
Abstract: We consider the ensemble average of two dimensional symmetric product orbifold CFTs $\text{Sym}N(\mathbb{T}D)$ over the Narain moduli space. We argue for a bulk dual given by $N$ copies of an abelian Chern-Simons theory coupled to topological gravity, endowed with a discrete gauge symmetry exchanging the $N$ copies. As a check of this proposal, we calculate the ensemble average of various partition and correlation functions of the symmetric product orbifold theory and compare the resulting expressions to gauge theory quantities in the bulk. We comment on the ensemble average of the tensionless string partition function on $\text{AdS}_3 \times \text{S}3 \times \mathbb T4$ by considering the specific case of $D=4$ with the addition of supersymmetry.
- P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix integral,” arXiv:1903.11115 [hep-th].
- D. Stanford and E. Witten, “JT gravity and the ensembles of random matrix theory,” Adv. Theor. Math. Phys. 24 no. 6, (2020) 1475–1680, arXiv:1907.03363 [hep-th].
- E. Witten, “Matrix Models and Deformations of JT Gravity,” Proc. Roy. Soc. Lond. A 476 no. 2244, (2020) 20200582, arXiv:2006.13414 [hep-th].
- H. Maxfield and G. J. Turiaci, “The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral,” JHEP 01 (2021) 118, arXiv:2006.11317 [hep-th].
- G. J. Turiaci, M. Usatyuk, and W. W. Weng, “2D dilaton-gravity, deformations of the minimal string, and matrix models,” Class. Quant. Grav. 38 no. 20, (2021) 204001, arXiv:2011.06038 [hep-th].
- S. Forste, H. Jockers, J. Kames-King, and A. Kanargias, “Deformations of JT gravity via topological gravity and applications,” JHEP 11 (2021) 154, arXiv:2107.02773 [hep-th].
- A. Maloney and E. Witten, “Averaging over Narain moduli space,” JHEP 10 (2020) 187, arXiv:2006.04855 [hep-th].
- N. Afkhami-Jeddi, H. Cohn, T. Hartman, and A. Tajdini, “Free partition functions and an averaged holographic duality,” JHEP 01 (2021) 130, arXiv:2006.04839 [hep-th].
- J. Cotler and K. Jensen, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT gravity and random CFT,” JHEP 04 (2021) 033, arXiv:2006.08648 [hep-th].
- J. Chandra, S. Collier, T. Hartman, and A. Maloney, “Semiclassical 3D gravity as an average of large-c CFTs,” arXiv:2203.06511 [hep-th].
- S. Collier and E. Perlmutter, “Harnessing S-duality in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM & supergravity as SL(2, ℤℤ\mathbb{Z}blackboard_Z)-averaged strings,” JHEP 08 (2022) 195, arXiv:2201.05093 [hep-th].
- S. Datta, S. Duary, P. Kraus, P. Maity, and A. Maloney, “Adding flavor to the Narain ensemble,” JHEP 05 (2022) 090, arXiv:2102.12509 [hep-th].
- A. Pérez and R. Troncoso, “Gravitational dual of averaged free CFT’s over the Narain lattice,” JHEP 11 (2020) 015, arXiv:2006.08216 [hep-th].
- J. Raeymaekers, “A note on ensemble holography for rational tori,” JHEP 12 (2021) 177, arXiv:2110.08833 [hep-th].
- M. Ashwinkumar, M. Dodelson, A. Kidambi, J. M. Leedom, and M. Yamazaki, “Chern-Simons invariants from ensemble averages,” JHEP 08 (2021) 044, arXiv:2104.14710 [hep-th].
- A. Dymarsky and A. Shapere, “Quantum stabilizer codes, lattices, and CFTs,” JHEP 21 (2020) 160, arXiv:2009.01244 [hep-th].
- A. Dymarsky and A. Shapere, “Comments on the holographic description of Narain theories,” JHEP 10 (2021) 197, arXiv:2012.15830 [hep-th].
- J. Dong, T. Hartman, and Y. Jiang, “Averaging over moduli in deformed WZW models,” JHEP 09 (2021) 185, arXiv:2105.12594 [hep-th].
- V. Meruliya, S. Mukhi, and P. Singh, “Poincaré Series, 3d Gravity and Averages of Rational CFT,” JHEP 04 (2021) 267, arXiv:2102.03136 [hep-th].
- V. Meruliya and S. Mukhi, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT gravity and RCFT ensembles with multiple invariants,” JHEP 08 (2021) 098, arXiv:2104.10178 [hep-th].
- A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08 (2013) 090, arXiv:1304.4926 [hep-th].
- O. Lunin and S. D. Mathur, “Correlation functions for M**N / S(N) orbifolds,” Commun. Math. Phys. 219 (2001) 399–442, arXiv:hep-th/0006196.
- O. Lunin and S. D. Mathur, “Three point functions for M(N) / S(N) orbifolds with N=4 supersymmetry,” Commun. Math. Phys. 227 (2002) 385–419, arXiv:hep-th/0103169.
- N. Benjamin, C. A. Keller, H. Ooguri, and I. G. Zadeh, “Narain to Narnia,” Commun. Math. Phys. 390 no. 1, (2022) 425–470, arXiv:2103.15826 [hep-th].
- L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the Symmetric Product CFT,” JHEP 04 (2019) 103, arXiv:1812.01007 [hep-th].
- L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “Deriving the AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT correspondence,” JHEP 02 (2020) 136, arXiv:1911.00378 [hep-th].
- L. Eberhardt, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT at higher genus,” JHEP 05 (2020) 150, arXiv:2002.11729 [hep-th].
- L. Eberhardt, “Partition functions of the tensionless string,” JHEP 03 (2021) 176, arXiv:2008.07533 [hep-th].
- L. Eberhardt, “Summing over Geometries in String Theory,” JHEP 05 (2021) 233, arXiv:2102.12355 [hep-th].
- A. Dei, M. R. Gaberdiel, R. Gopakumar, and B. Knighton, “Free field world-sheet correlators for AdS3subscriptAdS3{\rm AdS}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT,” JHEP 02 (2021) 081, arXiv:2009.11306 [hep-th].
- B. Knighton, “Higher genus correlators for tensionless AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT strings,” JHEP 04 (2021) 211, arXiv:2012.01445 [hep-th].
- H. Bertle, A. Dei, and M. R. Gaberdiel, “Stress-energy tensor correlators from the world-sheet,” JHEP 03 (2021) 036, arXiv:2012.08486 [hep-th].
- M. R. Gaberdiel and K. Naderi, “The physical states of the Hybrid Formalism,” JHEP 10 (2021) 168, arXiv:2106.06476 [hep-th].
- M. R. Gaberdiel and B. Nairz, “BPS correlators for AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 09 (2022) 244, arXiv:2207.03956 [hep-th].
- K. Naderi, “DDF operators in the hybrid formalism,” JHEP 12 (2022) 043, arXiv:2208.01617 [hep-th].
- W. P. Thurston, “Knots to narnia,”. https://youtu.be/IKSrBt2kFD4.
- Theoretical and Mathematical Physics. Springer, Heidelberg, Germany, 2013.
- C. L. Siegel, “Indefinite quadratische formen und funktionentheorie i,” Mathematische Annalen 124 no. 1, (Dec, 1951) 17–54. https://doi.org/10.1007/BF01343549.
- A. Weil, “Sur certains groupes d’opérateurs unitaires,” Acta Mathematica 111 no. none, (1964) 143 – 211. https://doi.org/10.1007/BF02391012.
- A. Weil, “Sur la formule de Siegel dans la théorie des groupes classiques,” Acta Mathematica 113 no. none, (1965) 1 – 87. https://doi.org/10.1007/BF02391774.
- H. Maass, Lectures on Siegel’s Modular Functions. Tata Institute of Fundamental Research, Bombay. Lectures on mathematics and physics, 1954. http://www.math.tifr.res.in/~publ/ln/tifr03.pdf.
- M. Porrati and C. Yu, “Partition functions of Chern-Simons theory on handlebodies by radial quantization,” JHEP 07 (2021) 194, arXiv:2104.12799 [hep-th].
- P. Kraus and F. Larsen, “Partition functions and elliptic genera from supergravity,” JHEP 01 (2007) 002, arXiv:hep-th/0607138.
- A. Maloney and E. Witten, “Quantum Gravity Partition Functions in Three Dimensions,” JHEP 02 (2010) 029, arXiv:0712.0155 [hep-th].
- L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The Conformal Field Theory of Orbifolds,” Nucl. Phys. B 282 (1987) 13–73.
- R. Dijkgraaf, G. W. Moore, E. P. Verlinde, and H. L. Verlinde, “Elliptic genera of symmetric products and second quantized strings,” Commun. Math. Phys. 185 (1997) 197–209, arXiv:hep-th/9608096.
- P. Bantay, “Permutation orbifolds and their applications,” Fields Inst. Commun. 39 (2003) 13, arXiv:hep-th/0104203.
- P. Bantay, “Symmetric products, permutation orbifolds and discrete torsion,” Lett. Math. Phys. 63 (2003) 209–218, arXiv:hep-th/0004025.
- R. A. Hidalgo, “On the inverse uniformization problem: real schottky uniformizations,” Revista Matemática Complutense 24 (2011) 391–420.
- L. M. Krauss and F. Wilczek, “Discrete gauge symmetry in continuum theories,” Phys. Rev. Lett. 62 (Mar, 1989) 1221–1223. https://link.aps.org/doi/10.1103/PhysRevLett.62.1221.
- J. Preskill and L. M. Krauss, “Local Discrete Symmetry and Quantum Mechanical Hair,” Nucl. Phys. B 341 (1990) 50–100.
- R. H. Dijkgraaf, “A geometrical approach to two-dimensional conformal field theory,” Ph. D. Thesis (1989) .
- R. Dijkgraaf and E. Witten, “Topological Gauge Theories and Group Cohomology,” Commun. Math. Phys. 129 (1990) 393.
- Springer International Publishing, Cham, 2016. https://doi.org/10.1007/978-3-319-33578-0_3.
- P. Bantay, “Characters and modular properties of permutation orbifolds,” Phys. Lett. B 419 (1998) 175–178, arXiv:hep-th/9708120.
- S. Gunningham, “Spin hurwitz numbers and topological quantum field theory,” Geom. Topol. 20 no. 4, (Sep, 2016) 1859–1907.
- A. Alexeevski and S. Natanzon, “Non-commutative extensions of two-dimensional topological field theories and hurwitz numbers for real algebraic curves,” arXiv:math/0202164 [math.GT].
- E. Witten, “Fivebranes and Knots,” arXiv:1101.3216 [hep-th].
- S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 no. 1, (2010) 87–178, arXiv:0804.1561 [hep-th].
- T. M. Apostol, Modular Functions and Dirichlet Series in Number theory. Graduate Texts in Mathematics. Springer New York, NY, 1989.
- X. Yin, “Partition Functions of Three-Dimensional Pure Gravity,” Commun. Num. Theor. Phys. 2 (2008) 285–324, arXiv:0710.2129 [hep-th].
- X. Yin, “On Non-handlebody Instantons in 3D Gravity,” JHEP 09 (2008) 120, arXiv:0711.2803 [hep-th].
- A. Dei and L. Eberhardt, “Correlators of the symmetric product orbifold,” JHEP 01 (2020) 108, arXiv:1911.08485 [hep-th].
- A. Maloney, H. Maxfield, and G. S. Ng, “A conformal block Farey tail,” JHEP 06 (2017) 117, arXiv:1609.02165 [hep-th].
- Princeton University Press, 1975. http://www.jstor.org/stable/j.ctt1b7x7xd.
- N. A’Campo, “Tresses, monodromie et le groupe symplectique.” Commentarii mathematici Helvetici 54 (1979) 318–327. http://eudml.org/doc/139786.
- T. E. Brendle and D. Margalit, “Point pushing, homology, and the hyperelliptic involution,” arXiv:1110.1397 [math.GT].
- T. Brendle, D. Margalit, and A. Putman, “Generators for the hyperelliptic torelli group and the kernel of the burau representation at t=−1𝑡1t=-1italic_t = - 1,” Inventiones mathematicae 200 no. 1, (Jul, 2014) 263–310.
- S. Hu, Lecture notes on Chern-Simons-Witten theory. 2001.
- E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun. Math. Phys. 121 (1989) 351–399.
- D. C. Cabra and G. L. Rossini, “Explicit connection between conformal field theory and 2+++1 chern-simons theory,” Modern Physics Letters A 12 no. 23, (Jul, 1997) 1687–1697.
- D. V. Belyaev and P. van Nieuwenhuizen, “Rigid supersymmetry with boundaries,” JHEP 04 (2008) 008, arXiv:0801.2377 [hep-th].
- D. S. Berman and D. C. Thompson, “Membranes with a boundary,” Nucl. Phys. B 820 (2009) 503–533, arXiv:0904.0241 [hep-th].
- E. Witten, “Three-Dimensional Gravity Revisited,” arXiv:0706.3359 [hep-th].
- S. Collier and A. Maloney, “Wormholes and spectral statistics in the Narain ensemble,” JHEP 03 (2022) 004, arXiv:2106.12760 [hep-th].
- A. Belin and J. de Boer, “Random statistics of OPE coefficients and Euclidean wormholes,” Class. Quant. Grav. 38 no. 16, (2021) 164001, arXiv:2006.05499 [hep-th].
- N. Seiberg and E. Witten, “The D1 / D5 system and singular CFT,” JHEP 04 (1999) 017, arXiv:hep-th/9903224.
- J. R. David, G. Mandal, and S. R. Wadia, “Microscopic formulation of black holes in string theory,” Phys. Rept. 369 (2002) 549–686, arXiv:hep-th/0203048.
- B. A. Burrington, A. W. Peet, and I. G. Zadeh, “Operator mixing for string states in the D1-D5 CFT near the orbifold point,” Phys. Rev. D 87 no. 10, (2013) 106001, arXiv:1211.6699 [hep-th].
- M. R. Gaberdiel, C. Peng, and I. G. Zadeh, “Higgsing the stringy higher spin symmetry,” JHEP 10 (2015) 101, arXiv:1506.02045 [hep-th].
- B. Guo and S. D. Mathur, “Lifting at higher levels in the D1D5 CFT,” JHEP 11 (2020) 145, arXiv:2008.01274 [hep-th].
- L. Apolo, A. Belin, S. Bintanja, A. Castro, and C. A. Keller, “Deforming symmetric product orbifolds: a tale of moduli and higher spin currents,” JHEP 08 (2022) 159, arXiv:2204.07590 [hep-th].
- N. Benjamin, S. Bintanja, A. Castro, and J. Hollander, “The stranger things of symmetric product orbifold CFTs,” JHEP 11 (2022) 054, arXiv:2208.11141 [hep-th].
- C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “Supersymmetric Field Theories on Three-Manifolds,” JHEP 05 (2013) 017, arXiv:1212.3388 [hep-th].
- B. Assel, D. Martelli, S. Murthy, and D. Yokoyama, “Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds,” JHEP 03 (2017) 095, arXiv:1609.08071 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.