Entanglement of Purification in Random Tensor Networks (2306.06163v1)
Abstract: The entanglement of purification $E_P(A\colon B)$ is a powerful correlation measure, but it is notoriously difficult to compute because it involves an optimization over all possible purifications. In this paper, we prove a new inequality: $E_P(A\colon B)\geq \frac{1}{2}S_R{(2)}(A\colon B)$, where $S_R{(n)}(A\colon B)$ is the Renyi reflected entropy. Using this, we compute $E_P(A\colon B)$ for a large class of random tensor networks at large bond dimension and show that it is equal to the entanglement wedge cross section $EW(A\colon B)$, proving a previous conjecture motivated from AdS/CFT.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.