Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zero-Shot Dialogue Relation Extraction by Relating Explainable Triggers and Relation Names

Published 9 Jun 2023 in cs.CL | (2306.06141v1)

Abstract: Developing dialogue relation extraction (DRE) systems often requires a large amount of labeled data, which can be costly and time-consuming to annotate. In order to improve scalability and support diverse, unseen relation extraction, this paper proposes a method for leveraging the ability to capture triggers and relate them to previously unseen relation names. Specifically, we introduce a model that enables zero-shot dialogue relation extraction by utilizing trigger-capturing capabilities. Our experiments on a benchmark DialogRE dataset demonstrate that the proposed model achieves significant improvements for both seen and unseen relations. Notably, this is the first attempt at zero-shot dialogue relation extraction using trigger-capturing capabilities, and our results suggest that this approach is effective for inferring previously unseen relation types. Overall, our findings highlight the potential for this method to enhance the scalability and practicality of DRE systems.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.