Papers
Topics
Authors
Recent
2000 character limit reached

Weakly Lensed Gravitational Waves: Probing Cosmic Structures with Wave-Optics Features

Published 8 Jun 2023 in gr-qc and astro-ph.CO | (2306.05282v2)

Abstract: Every signal propagating through the universe is at least weakly lensed by the intervening gravitational field. In some situations, wave-optics phenomena (diffraction, interference) can be observed as frequency-dependent modulations of the waveform of gravitational waves (GWs). We will denote these signatures as Wave-Optics Features (WOFs) and analyze them in detail. Our framework can efficiently and accurately compute WOF in the single-image regime, of which weak lensing is a limit. The phenomenology of WOF is rich and offers valuable information: the dense cusps of individual halos appear as peaks in Green's function for lensing. If resolved, these features probe the number, effective masses, spatial distribution and inner profiles of substructures. High signal-to-noise GW signals reveal WOFs well beyond the Einstein radius, leading to a fair probability of observation by upcoming detectors such as LISA. Potential applications of WOF include reconstruction of the lens' projected density, delensing standard sirens and inferring large-scale structure morphology and the halo mass function. Because WOF are sourced by light halos with negligible baryonic content, their detection (or lack thereof) holds promise to test dark matter scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. M. Bartelmann, Class. Quant. Grav. 27, 233001 (2010), arXiv:1010.3829 [astro-ph.CO] .
  2. A. K. Meena,   (2023), arXiv:2305.02880 [astro-ph.CO] .
  3. R. Takahashi and T. Nakamura, Astrophys. J. 595, 1039 (2003), arXiv:astro-ph/0305055 .
  4. L. Dai and T. Venumadhav,   (2017), arXiv:1702.04724 [gr-qc] .
  5. A. Ulmer and J. Goodman, Astrophys. J. 442, 67 (1995), arXiv:astro-ph/9406042 .
  6. R. Takahashi, Astron. Astrophys. 423, 787 (2004), arXiv:astro-ph/0402165 .
  7. A. Nitz, I. Harry, D. Brown, C. M. Biwer, J. Willis, T. D. Canton, C. Capano, T. Dent, L. Pekowsky, S. De, M. Cabero, G. S. C. Davies, A. R. Williamson, D. Macleod, B. Machenschalk, F. Pannarale, P. Kumar, S. Reyes, dfinstad, S. Kumar, S. Wu, M. Tápai, L. Singer, veronica villa, S. Khan, S. Fairhurst, K. Chandra, A. Nielsen, S. Singh,  and T. Massinger, “gwastro/pycbc: v2.1.2 release of pycbc,”  (2023).
  8. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  9. P. Auclair et al. (LISA Cosmology Working Group),   (2022), arXiv:2204.05434 [astro-ph.CO] .
  10. M. Maggiore et al., JCAP 03, 050 (2020), arXiv:1912.02622 [astro-ph.CO] .
  11. V. Kalogera et al.,   (2021), arXiv:2111.06990 [gr-qc] .
  12. M. Vallisneri, Phys. Rev. D 77, 042001 (2008), arXiv:gr-qc/0703086 .
  13. M. Maggiore, Gravitational waves: Volume 1: Theory and experiments (OUP Oxford, 2007).
  14. L. Pompili et al.,   (2023), arXiv:2303.18039 [gr-qc] .
  15. S. Borhanian and B. S. Sathyaprakash,   (2022), arXiv:2202.11048 [gr-qc] .
  16. X. Guo and Y. Lu, Phys. Rev. D 106, 023018 (2022), arXiv:2207.00325 [astro-ph.CO] .
  17. L. Dai and J. Miralda-Escudé, Astron. J. 159, 49 (2020), arXiv:1908.01773 [astro-ph.CO] .
  18. J. Zavala and C. S. Frenk, Galaxies 7, 81 (2019), arXiv:1907.11775 [astro-ph.CO] .
  19. F. Jiang and F. C. van den Bosch, Mon. Not. Roy. Astron. Soc. 458, 2848 (2016), arXiv:1403.6827 [astro-ph.CO] .
  20. D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005), arXiv:astro-ph/0504616 .
  21. A. L. Coil, in Planets, Stars and Stellar Systems. Volume 6: Extragalactic Astronomy and Cosmology, Vol. 6, edited by T. D. Oswalt and W. C. Keel (2013) p. 387.
  22. J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256 [astro-ph.CO] .
  23. M. R. Buckley and A. H. G. Peter, Phys. Rept. 761, 1 (2018), arXiv:1712.06615 [astro-ph.CO] .
  24. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  25. E. G. M. Ferreira, Astron. Astrophys. Rev. 29, 7 (2021), arXiv:2005.03254 [astro-ph.CO] .
  26. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  27. K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126, 071302 (2021), arXiv:2007.12705 [astro-ph.CO] .
  28. E. O. Nadler et al. (DES), Astrophys. J. 893, 48 (2020), arXiv:1912.03303 [astro-ph.GA] .
  29. Y. D. Hezaveh et al., Astrophys. J. 823, 37 (2016), arXiv:1601.01388 [astro-ph.CO] .
  30. A. Klein et al., Phys. Rev. D 93, 024003 (2016), arXiv:1511.05581 [gr-qc] .
  31. T. B. Littenberg and N. J. Cornish, Phys. Rev. D 107, 063004 (2023), arXiv:2301.03673 [gr-qc] .
  32. V. Baibhav et al., Exper. Astron. 51, 1385 (2021), arXiv:1908.11390 [astro-ph.HE] .
  33. M. A. Sedda et al., Class. Quant. Grav. 37, 215011 (2020), arXiv:1908.11375 [gr-qc] .
  34. A. Sesana et al., Exper. Astron. 51, 1333 (2021), arXiv:1908.11391 [astro-ph.IM] .
  35. G. Hinshaw and L. M. Krauss, Astrophys. J.  320, 468 (1987).
  36. R. A. Flores and J. R. Primack, Astrophys. J. Lett. 457, L5 (1996), arXiv:astro-ph/9512063 .
  37. G. L. Bryan and M. L. Norman, Astrophys. J. 495, 80 (1998), arXiv:astro-ph/9710107 .
  38. DLMF, “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/, Release 1.1.9 of 2023-03-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.