Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomalous and Linear Holographic Hard Wall Models for Glueballs and the Pomeron

Published 7 Jun 2023 in hep-ph and hep-th | (2306.04728v3)

Abstract: In this work we propose improved holographic hard wall (HW) models by the inclusion of anomalous dimensions in the dual operators that describe glueballs inspired by the AdS/CFT correspondence. The anomalous dimensions come from well known semi-classical gauge/string duality analysis showing a dependence with the logarithm of spin $S$ of the boundary states. We show that these logarithm anomalous dimensions of the high spin operators combined with the usual HW model allow us to match the pomeron trajectory and give glueball masses which are better than that of the original HW and soft wall (SW) models in comparison with lattice data. We also build up other anomalous HW (AHW) models considering that the logarithm anomalous dimensions can be approximated by a truncated series of odd powers of the difference $\sqrt{S}-1/\sqrt{S}$. These models also fit the pomeron trajectory and produce good glueball masses. Then, we consider an anomalous dimension which is proportional to $\sqrt{S}$, providing reasonable results. Finally, we propose an asymptotic linear AHW model which effective dimensions for high spins operators are of the form $\Delta=a\sqrt{S}+b$, where $a$ and $b$ are constants to be fixed by comparison with the soft pomeron trajectory. In this last model, the Regge trajectory is asymptotically linear even for very high spins ($J\sim 100$) matching the soft pomeron trajectory accurately and generates glueball masses with deviations with respect to the lattice data better than the original HW and SW models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183-386 (2000) doi:10.1016/S0370-1573(99)00083-6 [arXiv:hep-th/9905111 [hep-th]].
  2. J. Polchinski and M. J. Strassler, “Hard scattering and gauge / string duality,” Phys. Rev. Lett. 88, 031601 (2002) doi:10.1103/PhysRevLett.88.031601 [arXiv:hep-th/0109174 [hep-th]].
  3. J. Polchinski and M. J. Strassler, “Deep inelastic scattering and gauge / string duality,” JHEP 05, 012 (2003) doi:10.1088/1126-6708/2003/05/012 [arXiv:hep-th/0209211 [hep-th]].
  4. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A Semiclassical limit of the gauge / string correspondence,” Nucl. Phys. B 636, 99-114 (2002) doi:10.1016/S0550-3213(02)00373-5 [arXiv:hep-th/0204051 [hep-th]].
  5. A. V. Ramallo, “Introduction to the AdS/CFT correspondence,” Springer Proc. Phys. 161, 411-474 (2015) doi:10.1007/978-3-319-12238-0_10 [arXiv:1310.4319 [hep-th]].
  6. C. Csaki, H. Ooguri, Y. Oz and J. Terning, “Glueball mass spectrum from supergravity,” JHEP 01, 017 (1999) doi:10.1088/1126-6708/1999/01/017 [arXiv:hep-th/9806021 [hep-th]].
  7. R. de Mello Koch, A. Jevicki, M. Mihailescu and J. P. Nunes, “Evaluation of glueball masses from supergravity,” Phys. Rev. D 58, 105009 (1998) doi:10.1103/PhysRevD.58.105009 [arXiv:hep-th/9806125 [hep-th]].
  8. A. Hashimoto and Y. Oz, “Aspects of QCD dynamics from string theory,” Nucl. Phys. B 548, 167-179 (1999) doi:10.1016/S0550-3213(99)00120-0 [arXiv:hep-th/9809106 [hep-th]].
  9. C. Csaki, Y. Oz, J. Russo and J. Terning, “Large N QCD from rotating branes,” Phys. Rev. D 59, 065012 (1999) doi:10.1103/PhysRevD.59.065012 [arXiv:hep-th/9810186 [hep-th]].
  10. J. A. Minahan, “Glueball mass spectra and other issues for supergravity duals of QCD models,” JHEP 01, 020 (1999) doi:10.1088/1126-6708/1999/01/020 [arXiv:hep-th/9811156 [hep-th]].
  11. R. C. Brower, S. D. Mathur and C. I. Tan, “Glueball spectrum for QCD from AdS supergravity duality,” Nucl. Phys. B 587, 249-276 (2000) doi:10.1016/S0550-3213(00)00435-1 [arXiv:hep-th/0003115 [hep-th]].
  12. E. Caceres and R. Hernandez, “Glueball masses for the deformed conifold theory,” Phys. Lett. B 504, 64-70 (2001) doi:10.1016/S0370-2693(01)00278-7 [arXiv:hep-th/0011204 [hep-th]].
  13. H. Boschi-Filho and N. R. F. Braga, “Gauge / string duality and scalar glueball mass ratios,” JHEP 05, 009 (2003) doi:10.1088/1126-6708/2003/05/009 [arXiv:hep-th/0212207 [hep-th]].
  14. H. Boschi-Filho and N. R. F. Braga, “QCD / string holographic mapping and glueball mass spectrum,” Eur. Phys. J. C 32, 529-533 (2004) doi:10.1140/epjc/s2003-01526-4 [arXiv:hep-th/0209080 [hep-th]].
  15. R. Apreda, D. E. Crooks, N. J. Evans and M. Petrini, “Confinement, glueballs and strings from deformed AdS,” JHEP 05, 065 (2004) doi:10.1088/1126-6708/2004/05/065 [arXiv:hep-th/0308006 [hep-th]].
  16. X. Amador and E. Caceres, “Spin two glueball mass and glueball regge trajectory from supergravity,” JHEP 11, 022 (2004) doi:10.1088/1126-6708/2004/11/022 [arXiv:hep-th/0402061 [hep-th]].
  17. N. Evans, J. P. Shock and T. Waterson, “Towards a perfect QCD gravity dual,” Phys. Lett. B 622, 165-171 (2005) doi:10.1016/j.physletb.2005.07.014 [arXiv:hep-th/0505250 [hep-th]].
  18. E. Caceres and C. Nunez, “Glueballs of super Yang-Mills from wrapped branes,” JHEP 09, 027 (2005) doi:10.1088/1126-6708/2005/09/027 [arXiv:hep-th/0506051 [hep-th]].
  19. H. Boschi-Filho, N. R. F. Braga and H. L. Carrion, “Glueball Regge trajectories from gauge/string duality and the Pomeron,” Phys. Rev. D 73, 047901 (2006) doi:10.1103/PhysRevD.73.047901 [arXiv:hep-th/0507063 [hep-th]].
  20. P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, “On the light glueball spectrum in a holographic description of QCD,” Phys. Lett. B 652, 73-78 (2007) doi:10.1016/j.physletb.2007.06.072 [arXiv:hep-ph/0703316 [hep-ph]].
  21. E. Folco Capossoli and H. Boschi-Filho, “Odd spin glueball masses and the Odderon Regge trajectories from the holographic hardwall model,” Phys. Rev. D 88, no.2, 026010 (2013) doi:10.1103/PhysRevD.88.026010 [arXiv:1301.4457 [hep-th]].
  22. E. Folco Capossoli and H. Boschi-Filho, “Glueball spectra and Regge trajectories from a modified holographic softwall model,” Phys. Lett. B 753, 419-423 (2016) doi:10.1016/j.physletb.2015.12.034 [arXiv:1510.03372 [hep-ph]].
  23. E. Folco Capossoli, D. Li and H. Boschi-Filho, “Dynamical corrections to the anomalous holographic soft-wall model: the pomeron and the odderon,” Eur. Phys. J. C 76, no.6, 320 (2016) doi:10.1140/epjc/s10052-016-4171-0 [arXiv:1604.01647 [hep-ph]].
  24. E. F. Capossoli, J. P. M. Graça and H. Boschi-Filho, “AdS/QCD oddball masses and the odderon Regge trajectory from a twist-five operator approach,” Phys. Rev. D 105, no.2, 026026 (2022) doi:10.1103/PhysRevD.105.026026 [arXiv:2110.12498 [hep-th]].
  25. T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD,” Prog. Theor. Phys. 113, 843-882 (2005) doi:10.1143/PTP.113.843 [arXiv:hep-th/0412141 [hep-th]].
  26. T. Sakai and S. Sugimoto, “More on a holographic dual of QCD,” Prog. Theor. Phys. 114, 1083-1118 (2005) doi:10.1143/PTP.114.1083 [arXiv:hep-th/0507073 [hep-th]].
  27. G. F. de Teramond and S. J. Brodsky, “Hadronic spectrum of a holographic dual of QCD,” Phys. Rev. Lett. 94, 201601 (2005) doi:10.1103/PhysRevLett.94.201601 [arXiv:hep-th/0501022 [hep-th]].
  28. J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, “QCD and a holographic model of hadrons,” Phys. Rev. Lett. 95, 261602 (2005) doi:10.1103/PhysRevLett.95.261602 [arXiv:hep-ph/0501128 [hep-ph]].
  29. L. Da Rold and A. Pomarol, “Chiral symmetry breaking from five dimensional spaces,” Nucl. Phys. B 721, 79-97 (2005) doi:10.1016/j.nuclphysb.2005.05.009 [arXiv:hep-ph/0501218 [hep-ph]].
  30. K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, “Holographic model for hadrons in deformed AdS(5) background,” Phys. Lett. B 633, 602-606 (2006) doi:10.1016/j.physletb.2005.12.004 [arXiv:hep-ph/0510334 [hep-ph]].
  31. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D 74, 015005 (2006) doi:10.1103/PhysRevD.74.015005 [arXiv:hep-ph/0602229 [hep-ph]].
  32. S. J. Brodsky and G. F. de Teramond, “Hadronic spectra and light-front wavefunctions in holographic QCD,” Phys. Rev. Lett. 96, 201601 (2006) doi:10.1103/PhysRevLett.96.201601 [arXiv:hep-ph/0602252 [hep-ph]].
  33. H. Hata, T. Sakai, S. Sugimoto and S. Yamato, “Baryons from instantons in holographic QCD,” Prog. Theor. Phys. 117, 1157 (2007) doi:10.1143/PTP.117.1157 [arXiv:hep-th/0701280 [hep-th]].
  34. H. Forkel, M. Beyer and T. Frederico, “Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD,” JHEP 07, 077 (2007) doi:10.1088/1126-6708/2007/07/077 [arXiv:0705.1857 [hep-ph]].
  35. U. Gursoy and E. Kiritsis, “Exploring improved holographic theories for QCD: Part I,” JHEP 02, 032 (2008) doi:10.1088/1126-6708/2008/02/032 [arXiv:0707.1324 [hep-th]].
  36. U. Gursoy, E. Kiritsis and F. Nitti, “Exploring improved holographic theories for QCD: Part II,” JHEP 02, 019 (2008) doi:10.1088/1126-6708/2008/02/019 [arXiv:0707.1349 [hep-th]].
  37. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, “Mesons in Gauge/Gravity Duals - A Review,” Eur. Phys. J. A 35, 81-133 (2008) doi:10.1140/epja/i2007-10540-1 [arXiv:0711.4467 [hep-th]].
  38. A. Vega and I. Schmidt, “Scalar hadrons in AdS(5) x S**5,” Phys. Rev. D 78, 017703 (2008) doi:10.1103/PhysRevD.78.017703 [arXiv:0806.2267 [hep-ph]].
  39. W. de Paula, T. Frederico, H. Forkel and M. Beyer, “Dynamical AdS/QCD with area-law confinement and linear Regge trajectories,” Phys. Rev. D 79, 075019 (2009) doi:10.1103/PhysRevD.79.075019 [arXiv:0806.3830 [hep-ph]].
  40. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, “Light scalar mesons in the soft-wall model of AdS/QCD,” Phys. Rev. D 78, 055009 (2008) doi:10.1103/PhysRevD.78.055009 [arXiv:0807.1054 [hep-ph]].
  41. Z. Abidin and C. E. Carlson, “Nucleon electromagnetic and gravitational form factors from holography,” Phys. Rev. D 79, 115003 (2009) doi:10.1103/PhysRevD.79.115003 [arXiv:0903.4818 [hep-ph]].
  42. T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, “Dilaton in a soft-wall holographic approach to mesons and baryons,” Phys. Rev. D 85, 076003 (2012) doi:10.1103/PhysRevD.85.076003 [arXiv:1108.0346 [hep-ph]].
  43. D. Li, M. Huang and Q. S. Yan, “A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement,” Eur. Phys. J. C 73, 2615 (2013) doi:10.1140/epjc/s10052-013-2615-3 [arXiv:1206.2824 [hep-th]].
  44. S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich, “Light-Front Holographic QCD and Emerging Confinement,” Phys. Rept. 584, 1-105 (2015) doi:10.1016/j.physrep.2015.05.001 [arXiv:1407.8131 [hep-ph]].
  45. J. Sonnenschein, “Holography Inspired Stringy Hadrons,” Prog. Part. Nucl. Phys. 92, 1-49 (2017) doi:10.1016/j.ppnp.2016.06.005 [arXiv:1602.00704 [hep-th]].
  46. E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega and H. Boschi-Filho, “Hadronic spectra from deformed AdS backgrounds,” Chin. Phys. C 44, no.6, 064104 (2020) doi:10.1088/1674-1137/44/6/064104 [arXiv:1903.06269 [hep-ph]].
  47. S. S. Afonin, “Towards reconciling the holographic and lattice descriptions of radially excited hadrons,” Eur. Phys. J. C 80, no.8, 723 (2020) doi:10.1140/epjc/s10052-020-8306-y [arXiv:2008.05610 [hep-ph]].
  48. M. Rinaldi and V. Vento, “Meson and glueball spectroscopy within the graviton soft wall model,” Phys. Rev. D 104, no.3, 034016 (2021) doi:10.1103/PhysRevD.104.034016 [arXiv:2101.02616 [hep-ph]].
  49. H. R. Grigoryan and A. V. Radyushkin, “Form Factors and Wave Functions of Vector Mesons in Holographic QCD,” Phys. Lett. B 650, 421-427 (2007) doi:10.1016/j.physletb.2007.05.044 [arXiv:hep-ph/0703069 [hep-ph]].
  50. K. A. Mamo and I. Zahed, “Neutrino-nucleon DIS from holographic QCD: PDFs of sea and valence quarks, form factors, and structure functions of the proton,” Phys. Rev. D 104, no.6, 066010 (2021) doi:10.1103/PhysRevD.104.066010 [arXiv:2102.00608 [hep-ph]].
  51. P. V. Landshoff, “Pomerons,”, published in “Elastic and Difractive Scattering” Proceedings, Ed. V. Kundrat and P. Zavada, 2002, arXiv:hep-ph/0108156.
  52. V. S. Fadin and L. N. Lipatov, “BFKL pomeron in the next-to-leading approximation,” Phys. Lett. B 429, 127-134 (1998) doi:10.1016/S0370-2693(98)00473-0 [arXiv:hep-ph/9802290 [hep-ph]].
  53. H. B. Meyer and M. J. Teper, “Glueball Regge trajectories and the pomeron: A Lattice study,” Phys. Lett. B 605, 344-354 (2005) doi:10.1016/j.physletb.2004.11.036 [arXiv:hep-ph/0409183 [hep-ph]].
  54. C. J. Morningstar and M. J. Peardon, “The Glueball spectrum from an anisotropic lattice study,” Phys. Rev. D 60, 034509 (1999) doi:10.1103/PhysRevD.60.034509 [arXiv:hep-lat/9901004 [hep-lat]].
  55. B. Lucini and M. Teper, “SU(N) gauge theories in four-dimensions: Exploring the approach to N = infinity,” JHEP 06, 050 (2001) doi:10.1088/1126-6708/2001/06/050 [arXiv:hep-lat/0103027 [hep-lat]].
  56. E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards and E. Rinaldi, “Towards the glueball spectrum from unquenched lattice QCD,” JHEP 10, 170 (2012) doi:10.1007/JHEP10(2012)170 [arXiv:1208.1858 [hep-lat]].
  57. W. Sun, L. C. Gui, Y. Chen, M. Gong, C. Liu, Y. B. Liu, Z. Liu, J. P. Ma and J. B. Zhang, “Glueball spectrum from Nf=2subscript𝑁𝑓2N_{f}=2italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 2 lattice QCD study on anisotropic lattices,” Chin. Phys. C 42, no.9, 093103 (2018) doi:10.1088/1674-1137/42/9/093103 [arXiv:1702.08174 [hep-lat]].
  58. A. Athenodorou and M. Teper, “The glueball spectrum of SU(3) gauge theory in 3 + 1 dimensions,” JHEP 11, 172 (2020) doi:10.1007/JHEP11(2020)172 [arXiv:2007.06422 [hep-lat]].
  59. G. ’t Hooft, “A Planar Diagram Theory For Strong Interactions,” Nucl. Phys. B 72 (1974) 461.
  60. P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” Annals Phys. 144, 249 (1982) doi:10.1016/0003-4916(82)90116-6
  61. P. Lebiedowicz, O. Nachtmann and A. Szczurek, “Central exclusive diffractive production of a single photon in high-energy proton-proton collisions within the tensor-Pomeron approach,” Phys. Rev. D 107, no.7, 074014 (2023) doi:10.1103/PhysRevD.107.074014 [arXiv:2302.07192 [hep-ph]].
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.