Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Simulate Tree-Branch Dynamics for Manipulation (2306.03410v3)

Published 6 Jun 2023 in cs.RO and cs.LG

Abstract: We propose to use a simulation driven inverse inference approach to model the dynamics of tree branches under manipulation. Learning branch dynamics and gaining the ability to manipulate deformable vegetation can help with occlusion-prone tasks, such as fruit picking in dense foliage, as well as moving overhanging vines and branches for navigation in dense vegetation. The underlying deformable tree geometry is encapsulated as coarse spring abstractions executed on parallel, non-differentiable simulators. The implicit statistical model defined by the simulator, reference trajectories obtained by actively probing the ground truth, and the Bayesian formalism, together guide the spring parameter posterior density estimation. Our non-parametric inference algorithm, based on Stein Variational Gradient Descent, incorporates biologically motivated assumptions into the inference process as neural network driven learnt joint priors; moreover, it leverages the finite difference scheme for gradient approximations. Real and simulated experiments confirm that our model can predict deformation trajectories, quantify the estimation uncertainty, and it can perform better when base-lined against other inference algorithms, particularly from the Monte Carlo family. The model displays strong robustness properties in the presence of heteroscedastic sensor noise; furthermore, it can generalise to unseen grasp locations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. T. Lowe and J. Pinskier, “Tree reconstruction using topology optimisation,” Remote Sensing, vol. 15, no. 1, p. 172, 2022.
  2. E. Quigley, W. Lin, Y. Zhu, and R. Fedkiw, “Three dimensional reconstruction of botanical trees with simulatable geometry,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 4, no. 3, pp. 1–16, 2021.
  3. H. Zhou, X. Wang, W. Au, H. Kang, and C. Chen, “Intelligent robots for fruit harvesting: Recent developments and future challenges,” Precision Agriculture, vol. 23, no. 5, pp. 1856–1907, 2022.
  4. L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop design for improved robotic harvesting: A case study of sweet pepper harvesting,” Biosystems Engineering, vol. 192, pp. 294–308, 2020.
  5. K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-based inference,” Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30 055–30 062, 2020.
  6. E. Heiden, C. E. Denniston, D. Millard, F. Ramos, and G. S. Sukhatme, “Probabilistic inference of simulation parameters via parallel differentiable simulation,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 3638–3645.
  7. Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with real world experience,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8973–8979.
  8. R. Antonova, J. Yang, P. Sundaresan, D. Fox, F. Ramos, and J. Bohg, “A bayesian treatment of real-to-sim for deformable object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 5819–5826, 2022.
  9. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Science Robotics, vol. 6, no. 54, p. eabd8803, 2021.
  10. V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and J. L. Wyatt, “Modeling of deformable objects for robotic manipulation: A tutorial and review,” Frontiers in Robotics and AI, p. 82, 2020.
  11. J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and P. Abbeel, “A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2013, pp. 4111–4117.
  12. S. Makris, E. Kampourakis, and D. Andronas, “On deformable object handling: Model-based motion planning for human-robot co-manipulation,” CIRP Annals, 2022.
  13. A. Bozic, M. Zollhofer, C. Theobalt, and M. Nießner, “Deepdeform: Learning non-rigid rgb-d reconstruction with semi-supervised data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7002–7012.
  14. M. Rambow, T. Schauß, M. Buss, and S. Hirche, “Autonomous manipulation of deformable objects based on teleoperated demonstrations,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2012, pp. 2809–2814.
  15. B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard, “Learning object deformation models for robot motion planning,” Robotics and Autonomous Systems, vol. 62, no. 8, pp. 1153–1174, 2014.
  16. F. Yandun, A. Silwal, and G. Kantor, “Visual 3d reconstruction and dynamic simulation of fruit trees for robotic manipulation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 54–55.
  17. M. Yang, M.-C. Huang, G. Yang, and E.-H. Wu, “Physically-based animation for realistic interactions between tree branches and raindrops,” in Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, 2010, pp. 83–86.
  18. E. De Langre, “Effects of wind on plants,” Annu. Rev. Fluid Mech., vol. 40, pp. 141–168, 2008.
  19. K. R. James et al., “A study of branch dynamics on an open-grown tree,” Arboriculture & Urban Forestry, vol. 40, no. 3, pp. 125–34, 2014.
  20. R. Minamino and M. Tateno, “Tree branching: Leonardo da vinci’s rule versus biomechanical models,” PloS one, vol. 9, no. 4, p. e93535, 2014.
  21. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance gpu-based physics simulation for robot learning,” 2021.
  22. S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.
  23. Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian inference algorithm,” Advances in neural information processing systems, vol. 29, 2016.
  24. J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson, “Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration,” Advances in neural information processing systems, vol. 31, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.