Papers
Topics
Authors
Recent
Search
2000 character limit reached

Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model

Published 5 Jun 2023 in q-bio.QM | (2306.02929v2)

Abstract: Light microscopy is a widespread and inexpensive imaging technique facilitating biomedical discovery and diagnostics. However, light diffraction barrier and imperfections in optics limit the level of detail of the acquired images. The details lost can be reconstructed among others by deep learning models. Yet, deep learning models are prone to introduce artefacts and hallucinations into the reconstruction. Recent state-of-the-art image synthesis models like the denoising diffusion probabilistic models (DDPMs) are no exception to this. We propose to address this by incorporating the physical problem of microscopy image formation into the model's loss function. To overcome the lack of microscopy data, we train this model with synthetic data. We simulate the effects of the microscope optics through the theoretical point spread function and varying the noise levels to obtain synthetic data. Furthermore, we incorporate the physical model of a light microscope into the reverse process of a conditioned DDPM proposing a physics-informed DDPM (PI-DDPM). We show consistent improvement and artefact reductions when compared to model-based methods, deep-learning regression methods and regular conditioned DDPMs.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.