Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

From elephant to goldfish (and back): memory in stochastic Volterra processes (2306.02708v3)

Published 5 Jun 2023 in q-fin.MF and math.PR

Abstract: We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" within the dynamics of the non-Markovian process. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we provide a financial application to volatility modeling. We also propose a numerical scheme for simulating the processes. The numerical scheme exhibits a strong convergence rate of 1/2, which is independent of the roughness parameter of the volatility process. This is a significant improvement compared to Euler schemes used in similar models. We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" (the goldfish) within the dynamics of the non-Markovian process (the elephant). Most notably, it is also possible to go back, i.e., the transformation is reversible. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we propose a numerical scheme for simulating the processes, which exhibits a remarkable convergence rate of $1/2$. In particular, in the fractional kernel case, the strong convergence rate is independent of the roughness parameter, which is a positive novelty in contrast with what happens in the available Euler schemes in the literature in rough volatility models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.