From elephant to goldfish (and back): memory in stochastic Volterra processes (2306.02708v3)
Abstract: We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" within the dynamics of the non-Markovian process. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we provide a financial application to volatility modeling. We also propose a numerical scheme for simulating the processes. The numerical scheme exhibits a strong convergence rate of 1/2, which is independent of the roughness parameter of the volatility process. This is a significant improvement compared to Euler schemes used in similar models. We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" (the goldfish) within the dynamics of the non-Markovian process (the elephant). Most notably, it is also possible to go back, i.e., the transformation is reversible. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we propose a numerical scheme for simulating the processes, which exhibits a remarkable convergence rate of $1/2$. In particular, in the fractional kernel case, the strong convergence rate is independent of the roughness parameter, which is a positive novelty in contrast with what happens in the available Euler schemes in the literature in rough volatility models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.