Papers
Topics
Authors
Recent
2000 character limit reached

The Functional Graphical Lasso (2306.02347v2)

Published 4 Jun 2023 in stat.ME, math.ST, and stat.TH

Abstract: We consider the problem of recovering conditional independence relationships between $p$ jointly distributed Hilbertian random elements given $n$ realizations thereof. We operate in the sparse high-dimensional regime, where $n \ll p$ and no element is related to more than $d \ll p$ other elements. In this context, we propose an infinite-dimensional generalization of the graphical lasso. We prove model selection consistency under natural assumptions and extend many classical results to infinite dimensions. In particular, we do not require finite truncation or additional structural restrictions. The plug-in nature of our method makes it applicable to any observational regime, whether sparse or dense, and indifferent to serial dependence. Importantly, our method can be understood as naturally arising from a coherent maximum likelihood philosophy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.