Do we become wiser with time? On causal equivalence with tiered background knowledge (2306.01638v1)
Abstract: Equivalence classes of DAGs (represented by CPDAGs) may be too large to provide useful causal information. Here, we address incorporating tiered background knowledge yielding restricted equivalence classes represented by 'tiered MPDAGs'. Tiered knowledge leads to considerable gains in informativeness and computational efficiency: We show that construction of tiered MPDAGs only requires application of Meek's 1st rule, and that tiered MPDAGs (unlike general MPDAGs) are chain graphs with chordal components. This entails simplifications e.g. of determining valid adjustment sets for causal effect estimation. Further, we characterise when one tiered ordering is more informative than another, providing insights into useful aspects of background knowledge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.