Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Optimal Control and Approximate controllability of fractional semilinear differential inclusion involving $ψ$- Hilfer fractional derivatives (2306.01352v1)

Published 2 Jun 2023 in math.OC and math.AP

Abstract: The current paper initially studies the optimal control of linear $\psi$-Hilfer fractional derivatives with state-dependent control constraints and optimal control for a particular type of cost functional. Then, we investigate the approximate controllability of the abstract fractional semilinear differential inclusion involving $\psi$-Hilfer fractional derivative in reflexive Banach spaces. It is known that the existence, uniqueness, optimal control, and approximate controllability of fractional differential equations or inclusions have been demonstrated for a similar type of fractional differential equations or inclusions with different fractional order derivative operators. Hence it has to research fractional differential equations with more general fractional operators which incorporate all the specific fractional derivative operators. This motivates us to consider the $\psi$-Hilfer fractional differential inclusion. We assume the compactness of the corresponding semigroup and the approximate controllability of the associated linear control system and define the control with the help of duality mapping. We observe that convexity is essential in determining the controllability property of semilinear differential inclusion. In the case of Hilbert spaces, there is no issue of convexity as the duality map becomes simply the identity map. In contrast to Hilbert spaces, if we consider reflexive Banach spaces, there is an issue of convexity due to the nonlinear nature of duality mapping. The novelty of this paper is that we overcome this convexity issue and establish our main result. Finally, we test our outcomes through an example.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube