Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analyzing the Internals of Neural Radiance Fields (2306.00696v2)

Published 1 Jun 2023 in cs.CV and cs.GR

Abstract: Modern Neural Radiance Fields (NeRFs) learn a mapping from position to volumetric density leveraging proposal network samplers. In contrast to the coarse-to-fine sampling approach with two NeRFs, this offers significant potential for acceleration using lower network capacity. Given that NeRFs utilize most of their network capacity to estimate radiance, they could store valuable density information in their parameters or their deep features. To investigate this proposition, we take one step back and analyze large, trained ReLU-MLPs used in coarse-to-fine sampling. Building on our novel activation visualization method, we find that trained NeRFs, Mip-NeRFs and proposal network samplers map samples with high density to local minima along a ray in activation feature space. We show how these large MLPs can be accelerated by transforming intermediate activations to a weight estimate, without any modifications to the training protocol or the network architecture. With our approach, we can reduce the computational requirements of trained NeRFs by up to 50% with only a slight hit in rendering quality. Extensive experimental evaluation on a variety of datasets and architectures demonstrates the effectiveness of our approach. Consequently, our methodology provides valuable insight into the inner workings of NeRFs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube