Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 114 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Relational superposition measurements with a material quantum ruler (2306.00347v4)

Published 1 Jun 2023 in quant-ph

Abstract: In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a "quantum ruler" is composed of $N$ harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the "superposition of positions", and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. “Quantum entropy and special relativity”. Phys. Rev. Lett. 88, 230402 (2002). arXiv:quant-ph/0203033.
  2. “What is the relativistic spin operator?”. New Journal of Physics 16, 043012 (2014). arXiv:1303.3862.
  3. “Autonomous quantum clocks: does thermodynamics limit our ability to measure time?”. Phys. Rev. X 7, 031022 (2017). arXiv:1609.06704.
  4. “Quantum clocks are more accurate than classical ones”. PRX Quantum 3, 010319 (2022). arXiv:1806.00491.
  5. G. M. Tino et al. “Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space”. Nucl. Phys. B Proc. Suppl. 166, 159–165 (2007).
  6. “Quantum interferometric visibility as a witness of general relativistic proper time”. Nature communications 2, 505 (2011). arXiv:1105.4531.
  7. Domenico Giulini. “Equivalence principle, quantum mechanics, and atom-interferometric tests”. Pages 345–370. Springer Basel. Basel (2012). arXiv:1105.0749.
  8. “General relativistic effects in quantum interference of “clocks””. Journal of Physics: Conference Series 723, 012044 (2016). arXiv:1607.04022.
  9. Albert Roura. “Gravitational redshift in quantum-clock interferometry”. Phys. Rev. X 10, 021014 (2020). arXiv:1810.06744.
  10. PL Knight. “Measuring quantum states with quantum rulers”. In International Quantum Electronics Conference. Page FF2. Optica Publishing Group (1996). url: opg.optica.org/abstract.cfm?URI=IQEC-1996-FF2.
  11. T. C. Ralph. “Coherent superposition states as quantum rulers”. Phys. Rev. A 65, 042313 (2002). arXiv:quant-ph/0109106.
  12. Bryce S DeWitt. “Quantum theory of gravity. I. The canonical theory”. Phys. Rev. 160, 1113 (1967).
  13. “Gaussian reference fluid and interpretation of quantum geometrodynamics”. Phys. Rev. D 43, 419–441 (1991).
  14. “Dust as a standard of space and time in canonical quantum gravity”. Phys. Rev. D 51, 5600–5629 (1995). arXiv:gr-qc/9409001.
  15. “On relativistic material reference systems”. Phys. Rev. D 53, 1835–1844 (1996). arXiv:gr-qc/9509026.
  16. George F. R. Ellis and Rituparno Goswami. “Space time and the passage of time”. In Abhay Ashtekar and Vesselin Petkov, editors, Springer Handbook of Spacetime. Pages 243–264. Springer (2014). arXiv:1208.2611.
  17. Carlo Rovelli. “Quantum gravity”. Cambridge Monographs on Mathematical Physics. Cambridge University Press.  (2004).
  18. Carlo Rovelli. “Relational quantum mechanics”. Int. J. Theor. Phys. 35, 1637–1678 (1996). arXiv:quant-ph/9609002.
  19. Edward Anderson. “The problem of time”. Springer.  (2017).
  20. J. I. Cirac and P. Zoller. “Quantum computations with cold trapped ions”. Phys. Rev. Lett. 74, 4091–4094 (1995).
  21. “Scalable and programmable phononic network with trapped ions”. Nat. Phys.Pages 1–7 (2023). arXiv:2207.06115.
  22. “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber”. Phys. Rev. Lett. 104, 203603 (2010). arXiv:0912.1179.
  23. David Edward Bruschi. “Time evolution of coupled multimode and multiresonator optomechanical systems”. J. Math. Phys. 60, 062105 (2019). arXiv:1812.06879.
  24. Wojciech H. Zurek. “Decoherence and the Transition from Quantum to Classical”. Physics Today 44, 36–44 (1991).
  25. “Classical mechanics without absolute space”. Phys. Rev. D 52, 7322–7324 (1995). arXiv:astro-ph/9509158.
  26. B. Dittrich. “Partial and complete observables for Hamiltonian constrained systems”. Gen. Rel. Grav. 39, 1891–1927 (2007). arXiv:gr-qc/0411013.
  27. Johannes Tambornino. “Relational Observables in Gravity: a Review”. SIGMA 8, 017 (2012). arXiv:1109.0740.
  28. “Trinity of relational quantum dynamics”. Phys. Rev. D 104, 066001 (2021). arXiv:1912.00033.
  29. “Relating dust reference models to conventional systems in manifestly gauge invariant perturbation theory”. Phys. Rev. D 104, 023501 (2021). arXiv:2012.14443.
  30. “Relational evolution with oscillating clocks”. Phys. Rev. D 105, 106020 (2022). arXiv:2110.07702.
  31. “Relational observables in asymptotically safe gravity”. Annals Phys. 440, 168822 (2022). arXiv:2112.02118.
  32. “Classical world arising out of quantum physics under the restriction of coarse-grained measurements”. Phys. Rev. Lett. 99, 180403 (2007). arXiv:quant-ph/0609079.
  33. “The Classical Limit of a Physical Theory and the Dimensionality of Space”. Fundam. Theor. Phys. 181, 249–282 (2016). arXiv:1307.3984.
  34. “Weak measurements are universal”. Phys. Rev. Lett. 95, 110409 (2005). arXiv:quant-ph/0503017.
  35. Albert Schmid. “Diffusion and localization in a dissipative quantum system”. Phys. Rev. Lett. 51, 1506–1509 (1983).
  36. Matthew P. A. Fisher and Wilhelm Zwerger. “Quantum brownian motion in a periodic potential”. Phys. Rev. B 32, 6190–6206 (1985).
  37. “Quantum ohmic dissipation: Particle on a one-dimensional periodic lattice”. Physics Letters A 111, 175–178 (1985).
  38. “Quantifying coherence”. Phys. Rev. Lett. 113, 140401 (2014). arXiv:1311.0275.
  39. P. A. Cherenkov. “Visible luminescence of pure liquids under the influence of γ𝛾\gammaitalic_γ-radiation”. Dokl. Akad. Nauk SSSR 2, 451–454 (1934).
  40. W. G. Unruh. “Notes on black-hole evaporation”. Phys. Rev. D 14, 870–892 (1976).
  41. “Charge Superselection Rule”. Phys. Rev. 155, 1428–1431 (1967).
  42. Carlo Rovelli. “Relational quantum mechanics”. International journal of theoretical physics 35, 1637–1678 (1996).
  43. “Reference frames, superselection rules, and quantum information”. Rev. Mod. Phys. 79, 555–609 (2007). arXiv:quant-ph/0610030.
  44. “Mesoscopic mechanical resonators as quantum noninertial reference frames”. Phys. Rev. A 92, 042104 (2015). arXiv:1409.2137.
  45. “Quantum mechanics and the covariance of physical laws in quantum reference frames”. Nat. Commun. 10, 494 (2019). arXiv:1712.07207.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube