Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Generalization of the Graham-Pollak Tree Theorem to Steiner Distance (2306.00243v1)

Published 31 May 2023 in math.CO and cs.DM

Abstract: Graham and Pollak showed that the determinant of the distance matrix of a tree $T$ depends only on the number of vertices of $T$. Graphical distance, a function of pairs of vertices, can be generalized to ``Steiner distance'' of sets $S$ of vertices of arbitrary size, by defining it to be the fewest edges in any connected subgraph containing all of $S$. Here, we show that the same is true for trees' {\em Steiner distance hypermatrix} of all odd orders, whereas the theorem of Graham-Pollak concerns order $2$. We conjecture that the statement holds for all even orders as well.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.