Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonlinear dynamics for the Ising model (2305.18788v2)

Published 30 May 2023 in math.PR, math-ph, and math.MP

Abstract: We introduce and analyze a natural class of nonlinear dynamics for spin systems such as the Ising model. This class of dynamics is based on the framework of mass action kinetics, which models the evolution of systems of entities under pairwise interactions, and captures a number of important nonlinear models from various fields, including chemical reaction networks, Boltzmann's model of an ideal gas, recombination in population genetics and genetic algorithms. In the context of spin systems, it is a natural generalization of linear dynamics based on Markov chains, such as Glauber dynamics and block dynamics, which are by now well understood. However, the inherent nonlinearity makes the dynamics much harder to analyze, and rigorous quantitative results so far are limited to processes which converge to essentially trivial stationary distributions that are product measures. In this paper we provide the first quantitative convergence analysis for natural nonlinear dynamics in a combinatorial setting where the stationary distribution contains non-trivial correlations, namely the Ising model at high temperatures. We prove that nonlinear versions of both the Glauber dynamics and the block dynamics converge to the Gibbs distribution of the Ising model (with given external fields) in times $O(n\log n)$ and $O(\log n)$ respectively, where $n$ is the size of the underlying graph (number of spins). Given the lack of general analytical methods for such nonlinear systems, our analysis is unconventional, and combines tools such as information percolation (due in the linear setting to Lubetzky and Sly), a novel coupling of the Ising model with Erd\H{o}s-R\'enyi random graphs, and non-traditional branching processes augmented by a fragmentation process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.