Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On concentration of the empirical measure for radial transport costs (2305.18636v2)

Published 29 May 2023 in math.ST, math.PR, and stat.TH

Abstract: Let $\mu$ be a probability measure on $\mathbb{R}d$ and $\mu_N$ its empirical measure with sample size $N$. We prove a concentration inequality for the optimal transport cost between $\mu$ and $\mu_N$ for radial cost functions with polynomial local growth, that can have superpolynomial global growth. This result generalizes and improves upon estimates of Fournier and Guillin. The proof combines ideas from empirical process theory with known concentration rates for compactly supported $\mu$. By partitioning $\mathbb{R}d$ into annuli, we infer a global estimate from local estimates on the annuli and conclude that the global estimate can be expressed as a sum of the local estimate and a mean-deviation probability for which efficient bounds are known.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.