Investigating Pre-trained Audio Encoders in the Low-Resource Condition (2305.17733v1)
Abstract: Pre-trained speech encoders have been central to pushing state-of-the-art results across various speech understanding and generation tasks. Nonetheless, the capabilities of these encoders in low-resource settings are yet to be thoroughly explored. To address this, we conduct a comprehensive set of experiments using a representative set of 3 state-of-the-art encoders (Wav2vec2, WavLM, Whisper) in the low-resource setting across 7 speech understanding and generation tasks. We provide various quantitative and qualitative analyses on task performance, convergence speed, and representational properties of the encoders. We observe a connection between the pre-training protocols of these encoders and the way in which they capture information in their internal layers. In particular, we observe the Whisper encoder exhibits the greatest low-resource capabilities on content-driven tasks in terms of performance and convergence speed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.