Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Forward-Reflected-Backward and Shadow-Douglas--Rachford with partial inverse for Solving Monotone Inclusions (2305.17500v3)

Published 27 May 2023 in math.OC

Abstract: In this article, we study two methods for solving monotone inclusions in real Hilbert spaces involving the sum of a maximally monotone operator, a monotone-Lipschitzian operator, a cocoercive operator, and a normal cone to a vector subspace. Our algorithms split and exploits the intrinsic properties of each operator involved in the inclusion. We derive our methods by combining partial inverse techniques with the forward-reflected-backward algorithm and with the shadow-Douglas--Rachford algorithm, respectively. Our methods inherit the advantages of those methods, requiring only one activation of the Lipschitzian operator, one activation of the cocoercive operator, two projections onto the closed vector subspace, and one calculation of the resolvent of the maximally monotone operator. Additionally, to allow larger step-sizes in one of the proposed methods, we revisit FSDR by extending its convergence for larger step-sizes. Furthermore, we provide methods for solving monotone inclusions involving a sum of maximally monotone operators and for solving a system of primal-dual inclusions involving a mixture of sums, linear compositions, parallel sums, Lipschitzian operators, cocoercive operators, and normal cones. We apply our methods to constrained composite convex optimization problems as a specific example. Finally, in order to compare our methods with existing methods in the literature, we provide numerical experiments on constrained total variation least-squares optimization problems and computed tomography inverse problems. We obtain promising numerical results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube