A novel framework extending cause-effect inference methods to multivariate causal discovery (2305.16904v1)
Abstract: We focus on the extension of bivariate causal learning methods into multivariate problem settings in a systematic manner via a novel framework. It is purposive to augment the scale to which bivariate causal discovery approaches can be applied since contrast to traditional causal discovery methods, bivariate methods render estimation in the form of a causal Directed Acyclic Graph (DAG) instead of its complete partial directed acyclic graphs (CPDAGs). To tackle the problem, an auxiliary framework is proposed in this work so that together with any bivariate causal inference method, one could identify and estimate causal structure over variables more than two from observational data. In particular, we propose a local graphical structure in causal graph that is identifiable by a given bivariate method, which could be iteratively exploited to discover the whole causal structure under certain assumptions. We show both theoretically and experimentally that the proposed framework can achieve sound results in causal learning problems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.